(* Title: HOL/Extraction/Greatest_Common_Divisor.thy
ID: $Id$
Author: Stefan Berghofer, TU Muenchen
Helmut Schwichtenberg, LMU Muenchen
*)
header {* Greatest common divisor *}
theory Greatest_Common_Divisor
imports QuotRem
begin
theorem greatest_common_divisor:
"\<And>n::nat. Suc m < n \<Longrightarrow> \<exists>k n1 m1. k * n1 = n \<and> k * m1 = Suc m \<and>
(\<forall>l l1 l2. l * l1 = n \<longrightarrow> l * l2 = Suc m \<longrightarrow> l \<le> k)"
proof (induct m rule: nat_wf_ind)
case (1 m n)
from division obtain r q where h1: "n = Suc m * q + r" and h2: "r \<le> m"
by iprover
show ?case
proof (cases r)
case 0
with h1 have "Suc m * q = n" by simp
moreover have "Suc m * 1 = Suc m" by simp
moreover {
fix l2 have "\<And>l l1. l * l1 = n \<Longrightarrow> l * l2 = Suc m \<Longrightarrow> l \<le> Suc m"
by (cases l2) simp_all }
ultimately show ?thesis by iprover
next
case (Suc nat)
with h2 have h: "nat < m" by simp
moreover from h have "Suc nat < Suc m" by simp
ultimately have "\<exists>k m1 r1. k * m1 = Suc m \<and> k * r1 = Suc nat \<and>
(\<forall>l l1 l2. l * l1 = Suc m \<longrightarrow> l * l2 = Suc nat \<longrightarrow> l \<le> k)"
by (rule 1)
then obtain k m1 r1 where
h1': "k * m1 = Suc m"
and h2': "k * r1 = Suc nat"
and h3': "\<And>l l1 l2. l * l1 = Suc m \<Longrightarrow> l * l2 = Suc nat \<Longrightarrow> l \<le> k"
by iprover
have mn: "Suc m < n" by (rule 1)
from h1 h1' h2' Suc have "k * (m1 * q + r1) = n"
by (simp add: add_mult_distrib2 nat_mult_assoc [symmetric])
moreover have "\<And>l l1 l2. l * l1 = n \<Longrightarrow> l * l2 = Suc m \<Longrightarrow> l \<le> k"
proof -
fix l l1 l2
assume ll1n: "l * l1 = n"
assume ll2m: "l * l2 = Suc m"
moreover have "l * (l1 - l2 * q) = Suc nat"
by (simp add: diff_mult_distrib2 h1 Suc [symmetric] mn ll1n ll2m [symmetric])
ultimately show "l \<le> k" by (rule h3')
qed
ultimately show ?thesis using h1' by iprover
qed
qed
extract greatest_common_divisor
text {*
The extracted program for computing the greatest common divisor is
@{thm [display] greatest_common_divisor_def}
*}
instantiation nat :: default
begin
definition "default = (0::nat)"
instance ..
end
instantiation * :: (default, default) default
begin
definition "default = (default, default)"
instance ..
end
instantiation "fun" :: (type, default) default
begin
definition "default = (\<lambda>x. default)"
instance ..
end
consts_code
default ("(error \"default\")")
lemma "greatest_common_divisor 7 12 = (4, 3, 2)" by evaluation
lemma "greatest_common_divisor 7 12 = (4, 3, 2)" by eval
end