(* ID: $Id$
Author: Martin Coen, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
*)
header{*Simple Term Structure for Unification*}
theory UTerm
imports Main
begin
text{*Binary trees with leaves that are constants or variables.*}
datatype 'a uterm =
Var 'a
| Const 'a
| Comb "'a uterm" "'a uterm"
consts vars_of :: "'a uterm => 'a set"
primrec
vars_of_Var: "vars_of (Var v) = {v}"
vars_of_Const: "vars_of (Const c) = {}"
vars_of_Comb: "vars_of (Comb M N) = (vars_of(M) Un vars_of(N))"
consts occs :: "'a uterm => 'a uterm => bool" (infixl "<:" 54)
notation (xsymbols)
occs (infixl "\<prec>" 54)
primrec
occs_Var: "u \<prec> (Var v) = False"
occs_Const: "u \<prec> (Const c) = False"
occs_Comb: "u \<prec> (Comb M N) = (u=M | u=N | u \<prec> M | u \<prec> N)"
consts
uterm_size :: "'a uterm => nat"
primrec
uterm_size_Var: "uterm_size (Var v) = 0"
uterm_size_Const: "uterm_size (Const c) = 0"
uterm_size_Comb: "uterm_size (Comb M N) = Suc(uterm_size M + uterm_size N)"
lemma vars_var_iff: "(v \<in> vars_of(Var(w))) = (w=v)"
by auto
lemma vars_iff_occseq: "(x \<in> vars_of(t)) = (Var(x) \<prec> t | Var(x) = t)"
by (induct t) auto
text{* Not used, but perhaps useful in other proofs *}
lemma occs_vars_subset: "M\<prec>N \<Longrightarrow> vars_of(M) \<subseteq> vars_of(N)"
by (induct N) auto
lemma monotone_vars_of:
"vars_of M Un vars_of N \<subseteq> (vars_of M Un A) Un (vars_of N Un B)"
by blast
lemma finite_vars_of: "finite(vars_of M)"
by (induct M) auto
end