(* Title: HOL/Tools/Nitpick/minipick.ML
Author: Jasmin Blanchette, TU Muenchen
Copyright 2009, 2010
Finite model generation for HOL formulas using Kodkod, minimalistic version.
*)
signature MINIPICK =
sig
datatype rep = SRep | RRep
type styp = Nitpick_Util.styp
val vars_for_bound_var :
(typ -> int) -> rep -> typ list -> int -> Kodkod.rel_expr list
val rel_expr_for_bound_var :
(typ -> int) -> rep -> typ list -> int -> Kodkod.rel_expr
val decls_for : rep -> (typ -> int) -> typ list -> typ -> Kodkod.decl list
val false_atom : Kodkod.rel_expr
val true_atom : Kodkod.rel_expr
val formula_from_atom : Kodkod.rel_expr -> Kodkod.formula
val atom_from_formula : Kodkod.formula -> Kodkod.rel_expr
val kodkod_problem_from_term :
Proof.context -> (typ -> int) -> term -> Kodkod.problem
val solve_any_kodkod_problem : theory -> Kodkod.problem list -> string
end;
structure Minipick : MINIPICK =
struct
open Kodkod
open Nitpick_Util
open Nitpick_HOL
open Nitpick_Peephole
open Nitpick_Kodkod
datatype rep = SRep | RRep
(* Proof.context -> typ -> unit *)
fun check_type ctxt (Type ("fun", Ts)) = List.app (check_type ctxt) Ts
| check_type ctxt (Type ("*", Ts)) = List.app (check_type ctxt) Ts
| check_type _ @{typ bool} = ()
| check_type _ (TFree (_, @{sort "{}"})) = ()
| check_type _ (TFree (_, @{sort HOL.type})) = ()
| check_type ctxt T =
raise NOT_SUPPORTED ("type " ^ quote (Syntax.string_of_typ ctxt T))
(* rep -> (typ -> int) -> typ -> int list *)
fun atom_schema_of SRep card (Type ("fun", [T1, T2])) =
replicate_list (card T1) (atom_schema_of SRep card T2)
| atom_schema_of RRep card (Type ("fun", [T1, @{typ bool}])) =
atom_schema_of SRep card T1
| atom_schema_of RRep card (Type ("fun", [T1, T2])) =
atom_schema_of SRep card T1 @ atom_schema_of RRep card T2
| atom_schema_of _ card (Type ("*", Ts)) = maps (atom_schema_of SRep card) Ts
| atom_schema_of _ card T = [card T]
(* rep -> (typ -> int) -> typ -> int *)
val arity_of = length ooo atom_schema_of
(* (typ -> int) -> typ list -> int -> int *)
fun index_for_bound_var _ [_] 0 = 0
| index_for_bound_var card (_ :: Ts) 0 =
index_for_bound_var card Ts 0 + arity_of SRep card (hd Ts)
| index_for_bound_var card Ts n = index_for_bound_var card (tl Ts) (n - 1)
(* (typ -> int) -> rep -> typ list -> int -> rel_expr list *)
fun vars_for_bound_var card R Ts j =
map (curry Var 1) (index_seq (index_for_bound_var card Ts j)
(arity_of R card (nth Ts j)))
(* (typ -> int) -> rep -> typ list -> int -> rel_expr *)
val rel_expr_for_bound_var = foldl1 Product oooo vars_for_bound_var
(* rep -> (typ -> int) -> typ list -> typ -> decl list *)
fun decls_for R card Ts T =
map2 (curry DeclOne o pair 1)
(index_seq (index_for_bound_var card (T :: Ts) 0)
(arity_of R card (nth (T :: Ts) 0)))
(map (AtomSeq o rpair 0) (atom_schema_of R card T))
(* int list -> rel_expr *)
val atom_product = foldl1 Product o map Atom
val false_atom = Atom 0
val true_atom = Atom 1
(* rel_expr -> formula *)
fun formula_from_atom r = RelEq (r, true_atom)
(* formula -> rel_expr *)
fun atom_from_formula f = RelIf (f, true_atom, false_atom)
(* Proof.context -> (typ -> int) -> styp list -> term -> formula *)
fun kodkod_formula_from_term ctxt card frees =
let
(* typ -> rel_expr -> rel_expr *)
fun R_rep_from_S_rep (T as Type ("fun", [T1, @{typ bool}])) r =
let
val jss = atom_schema_of SRep card T1 |> map (rpair 0)
|> all_combinations
in
map2 (fn i => fn js =>
RelIf (formula_from_atom (Project (r, [Num i])),
atom_product js, empty_n_ary_rel (length js)))
(index_seq 0 (length jss)) jss
|> foldl1 Union
end
| R_rep_from_S_rep (Type ("fun", [T1, T2])) r =
let
val jss = atom_schema_of SRep card T1 |> map (rpair 0)
|> all_combinations
val arity2 = arity_of SRep card T2
in
map2 (fn i => fn js =>
Product (atom_product js,
Project (r, num_seq (i * arity2) arity2)
|> R_rep_from_S_rep T2))
(index_seq 0 (length jss)) jss
|> foldl1 Union
end
| R_rep_from_S_rep _ r = r
(* typ list -> typ -> rel_expr -> rel_expr *)
fun S_rep_from_R_rep Ts (T as Type ("fun", _)) r =
Comprehension (decls_for SRep card Ts T,
RelEq (R_rep_from_S_rep T
(rel_expr_for_bound_var card SRep (T :: Ts) 0), r))
| S_rep_from_R_rep _ _ r = r
(* typ list -> term -> formula *)
fun to_F Ts t =
(case t of
@{const Not} $ t1 => Not (to_F Ts t1)
| @{const False} => False
| @{const True} => True
| Const (@{const_name All}, _) $ Abs (s, T, t') =>
All (decls_for SRep card Ts T, to_F (T :: Ts) t')
| (t0 as Const (@{const_name All}, _)) $ t1 =>
to_F Ts (t0 $ eta_expand Ts t1 1)
| Const (@{const_name Ex}, _) $ Abs (_, T, t') =>
Exist (decls_for SRep card Ts T, to_F (T :: Ts) t')
| (t0 as Const (@{const_name Ex}, _)) $ t1 =>
to_F Ts (t0 $ eta_expand Ts t1 1)
| Const (@{const_name "op ="}, _) $ t1 $ t2 =>
RelEq (to_R_rep Ts t1, to_R_rep Ts t2)
| Const (@{const_name ord_class.less_eq},
Type ("fun", [Type ("fun", [_, @{typ bool}]), _])) $ t1 $ t2 =>
Subset (to_R_rep Ts t1, to_R_rep Ts t2)
| @{const "op &"} $ t1 $ t2 => And (to_F Ts t1, to_F Ts t2)
| @{const "op |"} $ t1 $ t2 => Or (to_F Ts t1, to_F Ts t2)
| @{const "op -->"} $ t1 $ t2 => Implies (to_F Ts t1, to_F Ts t2)
| t1 $ t2 => Subset (to_S_rep Ts t2, to_R_rep Ts t1)
| Free _ => raise SAME ()
| Term.Var _ => raise SAME ()
| Bound _ => raise SAME ()
| Const (s, _) => raise NOT_SUPPORTED ("constant " ^ quote s)
| _ => raise TERM ("Minipick.kodkod_formula_from_term.to_F", [t]))
handle SAME () => formula_from_atom (to_R_rep Ts t)
(* typ list -> term -> rel_expr *)
and to_S_rep Ts t =
case t of
Const (@{const_name Pair}, _) $ t1 $ t2 =>
Product (to_S_rep Ts t1, to_S_rep Ts t2)
| Const (@{const_name Pair}, _) $ _ => to_S_rep Ts (eta_expand Ts t 1)
| Const (@{const_name Pair}, _) => to_S_rep Ts (eta_expand Ts t 2)
| Const (@{const_name fst}, _) $ t1 =>
let val fst_arity = arity_of SRep card (fastype_of1 (Ts, t)) in
Project (to_S_rep Ts t1, num_seq 0 fst_arity)
end
| Const (@{const_name fst}, _) => to_S_rep Ts (eta_expand Ts t 1)
| Const (@{const_name snd}, _) $ t1 =>
let
val pair_arity = arity_of SRep card (fastype_of1 (Ts, t1))
val snd_arity = arity_of SRep card (fastype_of1 (Ts, t))
val fst_arity = pair_arity - snd_arity
in Project (to_S_rep Ts t1, num_seq fst_arity snd_arity) end
| Const (@{const_name snd}, _) => to_S_rep Ts (eta_expand Ts t 1)
| Bound j => rel_expr_for_bound_var card SRep Ts j
| _ => S_rep_from_R_rep Ts (fastype_of1 (Ts, t)) (to_R_rep Ts t)
(* term -> rel_expr *)
and to_R_rep Ts t =
(case t of
@{const Not} => to_R_rep Ts (eta_expand Ts t 1)
| Const (@{const_name All}, _) => to_R_rep Ts (eta_expand Ts t 1)
| Const (@{const_name Ex}, _) => to_R_rep Ts (eta_expand Ts t 1)
| Const (@{const_name "op ="}, _) $ _ => to_R_rep Ts (eta_expand Ts t 1)
| Const (@{const_name "op ="}, _) => to_R_rep Ts (eta_expand Ts t 2)
| Const (@{const_name ord_class.less_eq},
Type ("fun", [Type ("fun", [_, @{typ bool}]), _])) $ _ =>
to_R_rep Ts (eta_expand Ts t 1)
| Const (@{const_name ord_class.less_eq}, _) =>
to_R_rep Ts (eta_expand Ts t 2)
| @{const "op &"} $ _ => to_R_rep Ts (eta_expand Ts t 1)
| @{const "op &"} => to_R_rep Ts (eta_expand Ts t 2)
| @{const "op |"} $ _ => to_R_rep Ts (eta_expand Ts t 1)
| @{const "op |"} => to_R_rep Ts (eta_expand Ts t 2)
| @{const "op -->"} $ _ => to_R_rep Ts (eta_expand Ts t 1)
| @{const "op -->"} => to_R_rep Ts (eta_expand Ts t 2)
| Const (@{const_name bot_class.bot},
T as Type ("fun", [_, @{typ bool}])) =>
empty_n_ary_rel (arity_of RRep card T)
| Const (@{const_name insert}, _) $ t1 $ t2 =>
Union (to_S_rep Ts t1, to_R_rep Ts t2)
| Const (@{const_name insert}, _) $ _ => to_R_rep Ts (eta_expand Ts t 1)
| Const (@{const_name insert}, _) => to_R_rep Ts (eta_expand Ts t 2)
| Const (@{const_name trancl}, _) $ t1 =>
if arity_of RRep card (fastype_of1 (Ts, t1)) = 2 then
Closure (to_R_rep Ts t1)
else
raise NOT_SUPPORTED "transitive closure for function or pair type"
| Const (@{const_name trancl}, _) => to_R_rep Ts (eta_expand Ts t 1)
| Const (@{const_name semilattice_inf_class.inf},
Type ("fun", [Type ("fun", [_, @{typ bool}]), _])) $ t1 $ t2 =>
Intersect (to_R_rep Ts t1, to_R_rep Ts t2)
| Const (@{const_name semilattice_inf_class.inf}, _) $ _ =>
to_R_rep Ts (eta_expand Ts t 1)
| Const (@{const_name semilattice_inf_class.inf}, _) =>
to_R_rep Ts (eta_expand Ts t 2)
| Const (@{const_name semilattice_sup_class.sup},
Type ("fun", [Type ("fun", [_, @{typ bool}]), _])) $ t1 $ t2 =>
Union (to_R_rep Ts t1, to_R_rep Ts t2)
| Const (@{const_name semilattice_sup_class.sup}, _) $ _ =>
to_R_rep Ts (eta_expand Ts t 1)
| Const (@{const_name semilattice_sup_class.sup}, _) =>
to_R_rep Ts (eta_expand Ts t 2)
| Const (@{const_name minus_class.minus},
Type ("fun", [Type ("fun", [_, @{typ bool}]), _])) $ t1 $ t2 =>
Difference (to_R_rep Ts t1, to_R_rep Ts t2)
| Const (@{const_name minus_class.minus},
Type ("fun", [Type ("fun", [_, @{typ bool}]), _])) $ _ =>
to_R_rep Ts (eta_expand Ts t 1)
| Const (@{const_name minus_class.minus},
Type ("fun", [Type ("fun", [_, @{typ bool}]), _])) =>
to_R_rep Ts (eta_expand Ts t 2)
| Const (@{const_name Pair}, _) $ _ $ _ => raise SAME ()
| Const (@{const_name Pair}, _) $ _ => raise SAME ()
| Const (@{const_name Pair}, _) => raise SAME ()
| Const (@{const_name fst}, _) $ _ => raise SAME ()
| Const (@{const_name fst}, _) => raise SAME ()
| Const (@{const_name snd}, _) $ _ => raise SAME ()
| Const (@{const_name snd}, _) => raise SAME ()
| Const (_, @{typ bool}) => atom_from_formula (to_F Ts t)
| Free (x as (_, T)) =>
Rel (arity_of RRep card T, find_index (curry (op =) x) frees)
| Term.Var _ => raise NOT_SUPPORTED "schematic variables"
| Bound _ => raise SAME ()
| Abs (_, T, t') =>
(case fastype_of1 (T :: Ts, t') of
@{typ bool} => Comprehension (decls_for SRep card Ts T,
to_F (T :: Ts) t')
| T' => Comprehension (decls_for SRep card Ts T @
decls_for RRep card (T :: Ts) T',
Subset (rel_expr_for_bound_var card RRep
(T' :: T :: Ts) 0,
to_R_rep (T :: Ts) t')))
| t1 $ t2 =>
(case fastype_of1 (Ts, t) of
@{typ bool} => atom_from_formula (to_F Ts t)
| T =>
let val T2 = fastype_of1 (Ts, t2) in
case arity_of SRep card T2 of
1 => Join (to_S_rep Ts t2, to_R_rep Ts t1)
| arity2 =>
let val res_arity = arity_of RRep card T in
Project (Intersect
(Product (to_S_rep Ts t2,
atom_schema_of RRep card T
|> map (AtomSeq o rpair 0) |> foldl1 Product),
to_R_rep Ts t1),
num_seq arity2 res_arity)
end
end)
| _ => raise NOT_SUPPORTED ("term " ^
quote (Syntax.string_of_term ctxt t)))
handle SAME () => R_rep_from_S_rep (fastype_of1 (Ts, t)) (to_S_rep Ts t)
in to_F [] end
(* (typ -> int) -> int -> styp -> bound *)
fun bound_for_free card i (s, T) =
let val js = atom_schema_of RRep card T in
([((length js, i), s)],
[TupleSet [], atom_schema_of RRep card T |> map (rpair 0)
|> tuple_set_from_atom_schema])
end
(* (typ -> int) -> typ list -> typ -> rel_expr -> formula *)
fun declarative_axiom_for_rel_expr card Ts (Type ("fun", [T1, T2])) r =
if body_type T2 = bool_T then
True
else
All (decls_for SRep card Ts T1,
declarative_axiom_for_rel_expr card (T1 :: Ts) T2
(List.foldl Join r (vars_for_bound_var card SRep (T1 :: Ts) 0)))
| declarative_axiom_for_rel_expr _ _ _ r = One r
(* (typ -> int) -> bool -> int -> styp -> formula *)
fun declarative_axiom_for_free card i (_, T) =
declarative_axiom_for_rel_expr card [] T (Rel (arity_of RRep card T, i))
(* Proof.context -> (typ -> int) -> term -> problem *)
fun kodkod_problem_from_term ctxt raw_card t =
let
val thy = ProofContext.theory_of ctxt
(* typ -> int *)
fun card (Type ("fun", [T1, T2])) = reasonable_power (card T2) (card T1)
| card (Type ("*", [T1, T2])) = card T1 * card T2
| card @{typ bool} = 2
| card T = Int.max (1, raw_card T)
val neg_t = @{const Not} $ ObjectLogic.atomize_term thy t
val _ = fold_types (K o check_type ctxt) neg_t ()
val frees = Term.add_frees neg_t []
val bounds = map2 (bound_for_free card) (index_seq 0 (length frees)) frees
val declarative_axioms =
map2 (declarative_axiom_for_free card) (index_seq 0 (length frees)) frees
val formula = kodkod_formula_from_term ctxt card frees neg_t
|> fold_rev (curry And) declarative_axioms
val univ_card = univ_card 0 0 0 bounds formula
in
{comment = "", settings = [], univ_card = univ_card, tuple_assigns = [],
bounds = bounds, int_bounds = [], expr_assigns = [], formula = formula}
end
(* theory -> problem list -> string *)
fun solve_any_kodkod_problem thy problems =
let
val {overlord, ...} = Nitpick_Isar.default_params thy []
val max_threads = 1
val max_solutions = 1
in
case solve_any_problem overlord NONE max_threads max_solutions problems of
NotInstalled => "unknown"
| Normal ([], _, _) => "none"
| Normal _ => "genuine"
| TimedOut _ => "unknown"
| Interrupted _ => "unknown"
| Error (s, _) => error ("Kodkod error: " ^ s)
end
end;