(* Title: HOL/HOLCF/IOA/TL.thy
Author: Olaf Müller
*)
section \<open>A General Temporal Logic\<close>
theory TL
imports Pred Sequence
begin
default_sort type
type_synonym 'a temporal = "'a Seq predicate"
definition validT :: "'a Seq predicate \<Rightarrow> bool" (\<open>\<^bold>\<TTurnstile> _\<close> [9] 8)
where "(\<^bold>\<TTurnstile> P) \<longleftrightarrow> (\<forall>s. s \<noteq> UU \<and> s \<noteq> nil \<longrightarrow> (s \<Turnstile> P))"
definition unlift :: "'a lift \<Rightarrow> 'a"
where "unlift x = (case x of Def y \<Rightarrow> y)"
definition Init :: "'a predicate \<Rightarrow> 'a temporal" (\<open>\<langle>_\<rangle>\<close> [0] 1000)
where "Init P s = P (unlift (HD \<cdot> s))"
\<comment> \<open>this means that for \<open>nil\<close> and \<open>UU\<close> the effect is unpredictable\<close>
definition Next :: "'a temporal \<Rightarrow> 'a temporal" (\<open>(\<open>indent=1 notation=\<open>prefix Next\<close>\<close>\<circle>_)\<close> [80] 80)
where "(\<circle>P) s \<longleftrightarrow> (if TL \<cdot> s = UU \<or> TL \<cdot> s = nil then P s else P (TL \<cdot> s))"
definition suffix :: "'a Seq \<Rightarrow> 'a Seq \<Rightarrow> bool"
where "suffix s2 s \<longleftrightarrow> (\<exists>s1. Finite s1 \<and> s = s1 @@ s2)"
definition tsuffix :: "'a Seq \<Rightarrow> 'a Seq \<Rightarrow> bool"
where "tsuffix s2 s \<longleftrightarrow> s2 \<noteq> nil \<and> s2 \<noteq> UU \<and> suffix s2 s"
definition Box :: "'a temporal \<Rightarrow> 'a temporal" (\<open>(\<open>indent=1 notation=\<open>prefix Box\<close>\<close>\<box>_)\<close> [80] 80)
where "(\<box>P) s \<longleftrightarrow> (\<forall>s2. tsuffix s2 s \<longrightarrow> P s2)"
definition Diamond :: "'a temporal \<Rightarrow> 'a temporal" (\<open>(\<open>indent=1 notation=\<open>prefix Diamond\<close>\<close>\<diamond>_)\<close> [80] 80)
where "\<diamond>P = (\<^bold>\<not> (\<box>(\<^bold>\<not> P)))"
definition Leadsto :: "'a temporal \<Rightarrow> 'a temporal \<Rightarrow> 'a temporal" (infixr \<open>\<leadsto>\<close> 22)
where "(P \<leadsto> Q) = (\<box>(P \<^bold>\<longrightarrow> (\<diamond>Q)))"
lemma simple: "\<box>\<diamond>(\<^bold>\<not> P) = (\<^bold>\<not> \<diamond>\<box>P)"
by (auto simp add: Diamond_def NOT_def Box_def)
lemma Boxnil: "nil \<Turnstile> \<box>P"
by (simp add: satisfies_def Box_def tsuffix_def suffix_def nil_is_Conc)
lemma Diamondnil: "\<not> (nil \<Turnstile> \<diamond>P)"
using Boxnil by (simp add: Diamond_def satisfies_def NOT_def)
lemma Diamond_def2: "(\<diamond>F) s \<longleftrightarrow> (\<exists>s2. tsuffix s2 s \<and> F s2)"
by (simp add: Diamond_def NOT_def Box_def)
subsection \<open>TLA Axiomatization by Merz\<close>
lemma suffix_refl: "suffix s s"
apply (simp add: suffix_def)
apply (rule_tac x = "nil" in exI)
apply auto
done
lemma reflT: "s \<noteq> UU \<and> s \<noteq> nil \<longrightarrow> (s \<Turnstile> \<box>F \<^bold>\<longrightarrow> F)"
apply (simp add: satisfies_def IMPLIES_def Box_def)
apply (rule impI)+
apply (erule_tac x = "s" in allE)
apply (simp add: tsuffix_def suffix_refl)
done
lemma suffix_trans: "suffix y x \<Longrightarrow> suffix z y \<Longrightarrow> suffix z x"
apply (simp add: suffix_def)
apply auto
apply (rule_tac x = "s1 @@ s1a" in exI)
apply auto
apply (simp add: Conc_assoc)
done
lemma transT: "s \<Turnstile> \<box>F \<^bold>\<longrightarrow> \<box>\<box>F"
apply (simp add: satisfies_def IMPLIES_def Box_def tsuffix_def)
apply auto
apply (drule suffix_trans)
apply assumption
apply (erule_tac x = "s2a" in allE)
apply auto
done
lemma normalT: "s \<Turnstile> \<box>(F \<^bold>\<longrightarrow> G) \<^bold>\<longrightarrow> \<box>F \<^bold>\<longrightarrow> \<box>G"
by (simp add: satisfies_def IMPLIES_def Box_def)
subsection \<open>TLA Rules by Lamport\<close>
lemma STL1a: "\<^bold>\<TTurnstile> P \<Longrightarrow> \<^bold>\<TTurnstile> (\<box>P)"
by (simp add: validT_def satisfies_def Box_def tsuffix_def)
lemma STL1b: "\<TTurnstile> P \<Longrightarrow> \<^bold>\<TTurnstile> (Init P)"
by (simp add: valid_def validT_def satisfies_def Init_def)
lemma STL1: "\<TTurnstile> P \<Longrightarrow> \<^bold>\<TTurnstile> (\<box>(Init P))"
apply (rule STL1a)
apply (erule STL1b)
done
(*Note that unlift and HD is not at all used!*)
lemma STL4: "\<TTurnstile> (P \<^bold>\<longrightarrow> Q) \<Longrightarrow> \<^bold>\<TTurnstile> (\<box>(Init P) \<^bold>\<longrightarrow> \<box>(Init Q))"
by (simp add: valid_def validT_def satisfies_def IMPLIES_def Box_def Init_def)
subsection \<open>LTL Axioms by Manna/Pnueli\<close>
lemma tsuffix_TL [rule_format]: "s \<noteq> UU \<and> s \<noteq> nil \<longrightarrow> tsuffix s2 (TL \<cdot> s) \<longrightarrow> tsuffix s2 s"
apply (unfold tsuffix_def suffix_def)
apply auto
apply (Seq_case_simp s)
apply (rule_tac x = "a \<leadsto> s1" in exI)
apply auto
done
lemmas tsuffix_TL2 = conjI [THEN tsuffix_TL]
lemma LTL1: "s \<noteq> UU \<and> s \<noteq> nil \<longrightarrow> (s \<Turnstile> \<box>F \<^bold>\<longrightarrow> (F \<^bold>\<and> (\<circle>(\<box>F))))"
supply if_split [split del]
apply (unfold Next_def satisfies_def NOT_def IMPLIES_def AND_def Box_def)
apply auto
text \<open>\<open>\<box>F \<^bold>\<longrightarrow> F\<close>\<close>
apply (erule_tac x = "s" in allE)
apply (simp add: tsuffix_def suffix_refl)
text \<open>\<open>\<box>F \<^bold>\<longrightarrow> \<circle>\<box>F\<close>\<close>
apply (simp split: if_split)
apply auto
apply (drule tsuffix_TL2)
apply assumption+
apply auto
done
lemma LTL2a: "s \<Turnstile> \<^bold>\<not> (\<circle>F) \<^bold>\<longrightarrow> (\<circle>(\<^bold>\<not> F))"
by (simp add: Next_def satisfies_def NOT_def IMPLIES_def)
lemma LTL2b: "s \<Turnstile> (\<circle>(\<^bold>\<not> F)) \<^bold>\<longrightarrow> (\<^bold>\<not> (\<circle>F))"
by (simp add: Next_def satisfies_def NOT_def IMPLIES_def)
lemma LTL3: "ex \<Turnstile> (\<circle>(F \<^bold>\<longrightarrow> G)) \<^bold>\<longrightarrow> (\<circle>F) \<^bold>\<longrightarrow> (\<circle>G)"
by (simp add: Next_def satisfies_def NOT_def IMPLIES_def)
lemma ModusPonens: "\<^bold>\<TTurnstile> (P \<^bold>\<longrightarrow> Q) \<Longrightarrow> \<^bold>\<TTurnstile> P \<Longrightarrow> \<^bold>\<TTurnstile> Q"
by (simp add: validT_def satisfies_def IMPLIES_def)
end