(* Title: HOL/Library/Extended_Real.thy Author: Johannes Hölzl, TU München Author: Robert Himmelmann, TU München Author: Armin Heller, TU München Author: Bogdan Grechuk, University of Edinburgh Author: Manuel Eberl, TU München*)section \<open>Extended real number line\<close>theory Extended_Realimports Complex_Main Extended_Nat Liminf_Limsupbegintext \<open> This should be part of \<^theory>\<open>HOL-Library.Extended_Nat\<close> or \<^theory>\<open>HOL-Library.Order_Continuity\<close>, but then the AFP-entry \<open>Jinja_Thread\<close> fails, as it does overload certain named from \<^theory>\<open>Complex_Main\<close>.\<close>lemma incseq_sumI2: fixes f :: "'i \<Rightarrow> nat \<Rightarrow> 'a::ordered_comm_monoid_add" shows "(\<And>n. n \<in> A \<Longrightarrow> mono (f n)) \<Longrightarrow> mono (\<lambda>i. \<Sum>n\<in>A. f n i)" unfolding incseq_def by (auto intro: sum_mono)lemma incseq_sumI: fixes f :: "nat \<Rightarrow> 'a::ordered_comm_monoid_add" assumes "\<And>i. 0 \<le> f i" shows "incseq (\<lambda>i. sum f {..< i})"proof (intro incseq_SucI) fix n have "sum f {..< n} + 0 \<le> sum f {..<n} + f n" using assms by (rule add_left_mono) then show "sum f {..< n} \<le> sum f {..< Suc n}" by autoqedlemma continuous_at_left_imp_sup_continuous: fixes f :: "'a::{complete_linorder, linorder_topology} \<Rightarrow> 'b::{complete_linorder, linorder_topology}" assumes "mono f" "\<And>x. continuous (at_left x) f" shows "sup_continuous f" unfolding sup_continuous_defproof safe fix M :: "nat \<Rightarrow> 'a" assume "incseq M" then show "f (SUP i. M i) = (SUP i. f (M i))" using continuous_at_Sup_mono [OF assms, of "range M"] by (simp add: image_comp)qedlemma sup_continuous_at_left: fixes f :: "'a::{complete_linorder, linorder_topology, first_countable_topology} \<Rightarrow> 'b::{complete_linorder, linorder_topology}" assumes f: "sup_continuous f" shows "continuous (at_left x) f"proof cases assume "x = bot" then show ?thesis by (simp add: trivial_limit_at_left_bot)next assume x: "x \<noteq> bot" show ?thesis unfolding continuous_within proof (intro tendsto_at_left_sequentially[of bot]) fix S :: "nat \<Rightarrow> 'a" assume S: "incseq S" and S_x: "S \<longlonglongrightarrow> x" from S_x have x_eq: "x = (SUP i. S i)" by (rule LIMSEQ_unique) (intro LIMSEQ_SUP S) show "(\<lambda>n. f (S n)) \<longlonglongrightarrow> f x" unfolding x_eq sup_continuousD[OF f S] using S sup_continuous_mono[OF f] by (intro LIMSEQ_SUP) (auto simp: mono_def) qed (insert x, auto simp: bot_less)qedlemma sup_continuous_iff_at_left: fixes f :: "'a::{complete_linorder, linorder_topology, first_countable_topology} \<Rightarrow> 'b::{complete_linorder, linorder_topology}" shows "sup_continuous f \<longleftrightarrow> (\<forall>x. continuous (at_left x) f) \<and> mono f" using sup_continuous_at_left[of f] continuous_at_left_imp_sup_continuous[of f] sup_continuous_mono[of f] by autolemma continuous_at_right_imp_inf_continuous: fixes f :: "'a::{complete_linorder, linorder_topology} \<Rightarrow> 'b::{complete_linorder, linorder_topology}" assumes "mono f" "\<And>x. continuous (at_right x) f" shows "inf_continuous f" unfolding inf_continuous_defproof safe fix M :: "nat \<Rightarrow> 'a" assume "decseq M" then show "f (INF i. M i) = (INF i. f (M i))" using continuous_at_Inf_mono [OF assms, of "range M"] by (simp add: image_comp)qedlemma inf_continuous_at_right: fixes f :: "'a::{complete_linorder, linorder_topology, first_countable_topology} \<Rightarrow> 'b::{complete_linorder, linorder_topology}" assumes f: "inf_continuous f" shows "continuous (at_right x) f"proof cases assume "x = top" then show ?thesis by (simp add: trivial_limit_at_right_top)next assume x: "x \<noteq> top" show ?thesis unfolding continuous_within proof (intro tendsto_at_right_sequentially[of _ top]) fix S :: "nat \<Rightarrow> 'a" assume S: "decseq S" and S_x: "S \<longlonglongrightarrow> x" from S_x have x_eq: "x = (INF i. S i)" by (rule LIMSEQ_unique) (intro LIMSEQ_INF S) show "(\<lambda>n. f (S n)) \<longlonglongrightarrow> f x" unfolding x_eq inf_continuousD[OF f S] using S inf_continuous_mono[OF f] by (intro LIMSEQ_INF) (auto simp: mono_def antimono_def) qed (insert x, auto simp: less_top)qedlemma inf_continuous_iff_at_right: fixes f :: "'a::{complete_linorder, linorder_topology, first_countable_topology} \<Rightarrow> 'b::{complete_linorder, linorder_topology}" shows "inf_continuous f \<longleftrightarrow> (\<forall>x. continuous (at_right x) f) \<and> mono f" using inf_continuous_at_right[of f] continuous_at_right_imp_inf_continuous[of f] inf_continuous_mono[of f] by autoinstantiation enat :: linorder_topologybegindefinition open_enat :: "enat set \<Rightarrow> bool" where "open_enat = generate_topology (range lessThan \<union> range greaterThan)"instance proof qed (rule open_enat_def)endlemma open_enat: "open {enat n}"proof (cases n) case 0 then have "{enat n} = {..< eSuc 0}" by (auto simp: enat_0) then show ?thesis by simpnext case (Suc n') then have "{enat n} = {enat n' <..< enat (Suc n)}" apply auto apply (case_tac x) apply auto done then show ?thesis by simpqedlemma open_enat_iff: fixes A :: "enat set" shows "open A \<longleftrightarrow> (\<infinity> \<in> A \<longrightarrow> (\<exists>n::nat. {n <..} \<subseteq> A))"proof safe assume "\<infinity> \<notin> A" then have "A = (\<Union>n\<in>{n. enat n \<in> A}. {enat n})" apply auto apply (case_tac x) apply auto done moreover have "open \<dots>" by (auto intro: open_enat) ultimately show "open A" by simpnext fix n assume "{enat n <..} \<subseteq> A" then have "A = (\<Union>n\<in>{n. enat n \<in> A}. {enat n}) \<union> {enat n <..}" apply auto apply (case_tac x) apply auto done moreover have "open \<dots>" by (intro open_Un open_UN ballI open_enat open_greaterThan) ultimately show "open A" by simpnext assume "open A" "\<infinity> \<in> A" then have "generate_topology (range lessThan \<union> range greaterThan) A" "\<infinity> \<in> A" unfolding open_enat_def by auto then show "\<exists>n::nat. {n <..} \<subseteq> A" proof induction case (Int A B) then obtain n m where "{enat n<..} \<subseteq> A" "{enat m<..} \<subseteq> B" by auto then have "{enat (max n m) <..} \<subseteq> A \<inter> B" by (auto simp add: subset_eq Ball_def max_def simp flip: enat_ord_code(1)) then show ?case by auto next case (UN K) then obtain k where "k \<in> K" "\<infinity> \<in> k" by auto with UN.IH[OF this] show ?case by auto qed autoqedlemma nhds_enat: "nhds x = (if x = \<infinity> then INF i. principal {enat i..} else principal {x})"proof auto show "nhds \<infinity> = (INF i. principal {enat i..})" unfolding nhds_def apply (auto intro!: antisym INF_greatest simp add: open_enat_iff cong: rev_conj_cong) apply (auto intro!: INF_lower Ioi_le_Ico) [] subgoal for x i by (auto intro!: INF_lower2[of "Suc i"] simp: subset_eq Ball_def eSuc_enat Suc_ile_eq) done show "nhds (enat i) = principal {enat i}" for i by (simp add: nhds_discrete_open open_enat)qedinstance enat :: topological_comm_monoid_addproof have [simp]: "enat i \<le> aa \<Longrightarrow> enat i \<le> aa + ba" for aa ba i by (rule order_trans[OF _ add_mono[of aa aa 0 ba]]) auto then have [simp]: "enat i \<le> ba \<Longrightarrow> enat i \<le> aa + ba" for aa ba i by (metis add.commute) fix a b :: enat show "((\<lambda>x. fst x + snd x) \<longlongrightarrow> a + b) (nhds a \<times>\<^sub>F nhds b)" apply (auto simp: nhds_enat filterlim_INF prod_filter_INF1 prod_filter_INF2 filterlim_principal principal_prod_principal eventually_principal) subgoal for i by (auto intro!: eventually_INF1[of i] simp: eventually_principal) subgoal for j i by (auto intro!: eventually_INF1[of i] simp: eventually_principal) subgoal for j i by (auto intro!: eventually_INF1[of i] simp: eventually_principal) doneqedtext \<open> For more lemmas about the extended real numbers see \<^file>\<open>~~/src/HOL/Analysis/Extended_Real_Limits.thy\<close>.\<close>subsection \<open>Definition and basic properties\<close>datatype ereal = ereal real | PInfty | MInftylemma ereal_cong: "x = y \<Longrightarrow> ereal x = ereal y" by simpinstantiation ereal :: uminusbeginfun uminus_ereal where "- (ereal r) = ereal (- r)"| "- PInfty = MInfty"| "- MInfty = PInfty"instance ..endinstantiation ereal :: infinitybegindefinition "(\<infinity>::ereal) = PInfty"instance ..enddeclare [[coercion "ereal :: real \<Rightarrow> ereal"]]lemma ereal_uminus_uminus[simp]: fixes a :: ereal shows "- (- a) = a" by (cases a) simp_alllemma shows PInfty_eq_infinity[simp]: "PInfty = \<infinity>" and MInfty_eq_minfinity[simp]: "MInfty = - \<infinity>" and MInfty_neq_PInfty[simp]: "\<infinity> \<noteq> - (\<infinity>::ereal)" "- \<infinity> \<noteq> (\<infinity>::ereal)" and MInfty_neq_ereal[simp]: "ereal r \<noteq> - \<infinity>" "- \<infinity> \<noteq> ereal r" and PInfty_neq_ereal[simp]: "ereal r \<noteq> \<infinity>" "\<infinity> \<noteq> ereal r" and PInfty_cases[simp]: "(case \<infinity> of ereal r \<Rightarrow> f r | PInfty \<Rightarrow> y | MInfty \<Rightarrow> z) = y" and MInfty_cases[simp]: "(case - \<infinity> of ereal r \<Rightarrow> f r | PInfty \<Rightarrow> y | MInfty \<Rightarrow> z) = z" by (simp_all add: infinity_ereal_def)declare PInfty_eq_infinity[code_post] MInfty_eq_minfinity[code_post]lemma [code_unfold]: "\<infinity> = PInfty" "- PInfty = MInfty" by simp_alllemma inj_ereal[simp]: "inj_on ereal A" unfolding inj_on_def by autolemma ereal_cases[cases type: ereal]: obtains (real) r where "x = ereal r" | (PInf) "x = \<infinity>" | (MInf) "x = -\<infinity>" by (cases x) autolemmas ereal2_cases = ereal_cases[case_product ereal_cases]lemmas ereal3_cases = ereal2_cases[case_product ereal_cases]lemma ereal_all_split: "\<And>P. (\<forall>x::ereal. P x) \<longleftrightarrow> P \<infinity> \<and> (\<forall>x. P (ereal x)) \<and> P (-\<infinity>)" by (metis ereal_cases)lemma ereal_ex_split: "\<And>P. (\<exists>x::ereal. P x) \<longleftrightarrow> P \<infinity> \<or> (\<exists>x. P (ereal x)) \<or> P (-\<infinity>)" by (metis ereal_cases)lemma ereal_uminus_eq_iff[simp]: fixes a b :: ereal shows "-a = -b \<longleftrightarrow> a = b" by (cases rule: ereal2_cases[of a b]) simp_allfunction real_of_ereal :: "ereal \<Rightarrow> real" where "real_of_ereal (ereal r) = r"| "real_of_ereal \<infinity> = 0"| "real_of_ereal (-\<infinity>) = 0" by (auto intro: ereal_cases)termination by standard (rule wf_empty)lemma real_of_ereal[simp]: "real_of_ereal (- x :: ereal) = - (real_of_ereal x)" by (cases x) simp_alllemma range_ereal[simp]: "range ereal = UNIV - {\<infinity>, -\<infinity>}"proof safe fix x assume "x \<notin> range ereal" "x \<noteq> \<infinity>" then show "x = -\<infinity>" by (cases x) autoqed autolemma ereal_range_uminus[simp]: "range uminus = (UNIV::ereal set)"proof safe fix x :: ereal show "x \<in> range uminus" by (intro image_eqI[of _ _ "-x"]) autoqed autoinstantiation ereal :: absbeginfunction abs_ereal where "\<bar>ereal r\<bar> = ereal \<bar>r\<bar>"| "\<bar>-\<infinity>\<bar> = (\<infinity>::ereal)"| "\<bar>\<infinity>\<bar> = (\<infinity>::ereal)"by (auto intro: ereal_cases)termination proof qed (rule wf_empty)instance ..endlemma abs_eq_infinity_cases[elim!]: fixes x :: ereal assumes "\<bar>x\<bar> = \<infinity>" obtains "x = \<infinity>" | "x = -\<infinity>" using assms by (cases x) autolemma abs_neq_infinity_cases[elim!]: fixes x :: ereal assumes "\<bar>x\<bar> \<noteq> \<infinity>" obtains r where "x = ereal r" using assms by (cases x) autolemma abs_ereal_uminus[simp]: fixes x :: ereal shows "\<bar>- x\<bar> = \<bar>x\<bar>" by (cases x) autolemma ereal_infinity_cases: fixes a :: ereal shows "a \<noteq> \<infinity> \<Longrightarrow> a \<noteq> -\<infinity> \<Longrightarrow> \<bar>a\<bar> \<noteq> \<infinity>" by autosubsubsection "Addition"instantiation ereal :: "{one,comm_monoid_add,zero_neq_one}"begindefinition "0 = ereal 0"definition "1 = ereal 1"function plus_ereal where "ereal r + ereal p = ereal (r + p)"| "\<infinity> + a = (\<infinity>::ereal)"| "a + \<infinity> = (\<infinity>::ereal)"| "ereal r + -\<infinity> = - \<infinity>"| "-\<infinity> + ereal p = -(\<infinity>::ereal)"| "-\<infinity> + -\<infinity> = -(\<infinity>::ereal)"proof goal_cases case prems: (1 P x) then obtain a b where "x = (a, b)" by (cases x) auto with prems show P by (cases rule: ereal2_cases[of a b]) autoqed autotermination by standard (rule wf_empty)lemma Infty_neq_0[simp]: "(\<infinity>::ereal) \<noteq> 0" "0 \<noteq> (\<infinity>::ereal)" "-(\<infinity>::ereal) \<noteq> 0" "0 \<noteq> -(\<infinity>::ereal)" by (simp_all add: zero_ereal_def)lemma ereal_eq_0[simp]: "ereal r = 0 \<longleftrightarrow> r = 0" "0 = ereal r \<longleftrightarrow> r = 0" unfolding zero_ereal_def by simp_alllemma ereal_eq_1[simp]: "ereal r = 1 \<longleftrightarrow> r = 1" "1 = ereal r \<longleftrightarrow> r = 1" unfolding one_ereal_def by simp_allinstanceproof fix a b c :: ereal show "0 + a = a" by (cases a) (simp_all add: zero_ereal_def) show "a + b = b + a" by (cases rule: ereal2_cases[of a b]) simp_all show "a + b + c = a + (b + c)" by (cases rule: ereal3_cases[of a b c]) simp_all show "0 \<noteq> (1::ereal)" by (simp add: one_ereal_def zero_ereal_def)qedendlemma ereal_0_plus [simp]: "ereal 0 + x = x" and plus_ereal_0 [simp]: "x + ereal 0 = x"by(simp_all flip: zero_ereal_def)instance ereal :: numeral ..lemma real_of_ereal_0[simp]: "real_of_ereal (0::ereal) = 0" unfolding zero_ereal_def by simplemma abs_ereal_zero[simp]: "\<bar>0\<bar> = (0::ereal)" unfolding zero_ereal_def abs_ereal.simps by simplemma ereal_uminus_zero[simp]: "- 0 = (0::ereal)" by (simp add: zero_ereal_def)lemma ereal_uminus_zero_iff[simp]: fixes a :: ereal shows "-a = 0 \<longleftrightarrow> a = 0" by (cases a) simp_alllemma ereal_plus_eq_PInfty[simp]: fixes a b :: ereal shows "a + b = \<infinity> \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>" by (cases rule: ereal2_cases[of a b]) autolemma ereal_plus_eq_MInfty[simp]: fixes a b :: ereal shows "a + b = -\<infinity> \<longleftrightarrow> (a = -\<infinity> \<or> b = -\<infinity>) \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>" by (cases rule: ereal2_cases[of a b]) autolemma ereal_add_cancel_left: fixes a b :: ereal assumes "a \<noteq> -\<infinity>" shows "a + b = a + c \<longleftrightarrow> a = \<infinity> \<or> b = c" using assms by (cases rule: ereal3_cases[of a b c]) autolemma ereal_add_cancel_right: fixes a b :: ereal assumes "a \<noteq> -\<infinity>" shows "b + a = c + a \<longleftrightarrow> a = \<infinity> \<or> b = c" using assms by (cases rule: ereal3_cases[of a b c]) autolemma ereal_real: "ereal (real_of_ereal x) = (if \<bar>x\<bar> = \<infinity> then 0 else x)" by (cases x) simp_alllemma real_of_ereal_add: fixes a b :: ereal shows "real_of_ereal (a + b) = (if (\<bar>a\<bar> = \<infinity>) \<and> (\<bar>b\<bar> = \<infinity>) \<or> (\<bar>a\<bar> \<noteq> \<infinity>) \<and> (\<bar>b\<bar> \<noteq> \<infinity>) then real_of_ereal a + real_of_ereal b else 0)" by (cases rule: ereal2_cases[of a b]) autosubsubsection "Linear order on \<^typ>\<open>ereal\<close>"instantiation ereal :: linorderbeginfunction less_erealwhere " ereal x < ereal y \<longleftrightarrow> x < y"| "(\<infinity>::ereal) < a \<longleftrightarrow> False"| " a < -(\<infinity>::ereal) \<longleftrightarrow> False"| "ereal x < \<infinity> \<longleftrightarrow> True"| " -\<infinity> < ereal r \<longleftrightarrow> True"| " -\<infinity> < (\<infinity>::ereal) \<longleftrightarrow> True"proof goal_cases case prems: (1 P x) then obtain a b where "x = (a,b)" by (cases x) auto with prems show P by (cases rule: ereal2_cases[of a b]) autoqed simp_alltermination by (relation "{}") simpdefinition "x \<le> (y::ereal) \<longleftrightarrow> x < y \<or> x = y"lemma ereal_infty_less[simp]: fixes x :: ereal shows "x < \<infinity> \<longleftrightarrow> (x \<noteq> \<infinity>)" "-\<infinity> < x \<longleftrightarrow> (x \<noteq> -\<infinity>)" by (cases x, simp_all) (cases x, simp_all)lemma ereal_infty_less_eq[simp]: fixes x :: ereal shows "\<infinity> \<le> x \<longleftrightarrow> x = \<infinity>" and "x \<le> -\<infinity> \<longleftrightarrow> x = -\<infinity>" by (auto simp add: less_eq_ereal_def)lemma ereal_less[simp]: "ereal r < 0 \<longleftrightarrow> (r < 0)" "0 < ereal r \<longleftrightarrow> (0 < r)" "ereal r < 1 \<longleftrightarrow> (r < 1)" "1 < ereal r \<longleftrightarrow> (1 < r)" "0 < (\<infinity>::ereal)" "-(\<infinity>::ereal) < 0" by (simp_all add: zero_ereal_def one_ereal_def)lemma ereal_less_eq[simp]: "x \<le> (\<infinity>::ereal)" "-(\<infinity>::ereal) \<le> x" "ereal r \<le> ereal p \<longleftrightarrow> r \<le> p" "ereal r \<le> 0 \<longleftrightarrow> r \<le> 0" "0 \<le> ereal r \<longleftrightarrow> 0 \<le> r" "ereal r \<le> 1 \<longleftrightarrow> r \<le> 1" "1 \<le> ereal r \<longleftrightarrow> 1 \<le> r" by (auto simp add: less_eq_ereal_def zero_ereal_def one_ereal_def)lemma ereal_infty_less_eq2: "a \<le> b \<Longrightarrow> a = \<infinity> \<Longrightarrow> b = (\<infinity>::ereal)" "a \<le> b \<Longrightarrow> b = -\<infinity> \<Longrightarrow> a = -(\<infinity>::ereal)" by simp_allinstanceproof fix x y z :: ereal show "x \<le> x" by (cases x) simp_all show "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x" by (cases rule: ereal2_cases[of x y]) auto show "x \<le> y \<or> y \<le> x " by (cases rule: ereal2_cases[of x y]) auto { assume "x \<le> y" "y \<le> x" then show "x = y" by (cases rule: ereal2_cases[of x y]) auto } { assume "x \<le> y" "y \<le> z" then show "x \<le> z" by (cases rule: ereal3_cases[of x y z]) auto }qedendlemma ereal_dense2: "x < y \<Longrightarrow> \<exists>z. x < ereal z \<and> ereal z < y" using lt_ex gt_ex dense by (cases x y rule: ereal2_cases) autoinstance ereal :: dense_linorder by standard (blast dest: ereal_dense2)instance ereal :: ordered_comm_monoid_addproof fix a b c :: ereal assume "a \<le> b" then show "c + a \<le> c + b" by (cases rule: ereal3_cases[of a b c]) autoqedlemma ereal_one_not_less_zero_ereal[simp]: "\<not> 1 < (0::ereal)" by (simp add: zero_ereal_def)lemma real_of_ereal_positive_mono: fixes x y :: ereal shows "0 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<noteq> \<infinity> \<Longrightarrow> real_of_ereal x \<le> real_of_ereal y" by (cases rule: ereal2_cases[of x y]) autolemma ereal_MInfty_lessI[intro, simp]: fixes a :: ereal shows "a \<noteq> -\<infinity> \<Longrightarrow> -\<infinity> < a" by (cases a) autolemma ereal_less_PInfty[intro, simp]: fixes a :: ereal shows "a \<noteq> \<infinity> \<Longrightarrow> a < \<infinity>" by (cases a) autolemma ereal_less_ereal_Ex: fixes a b :: ereal shows "x < ereal r \<longleftrightarrow> x = -\<infinity> \<or> (\<exists>p. p < r \<and> x = ereal p)" by (cases x) autolemma less_PInf_Ex_of_nat: "x \<noteq> \<infinity> \<longleftrightarrow> (\<exists>n::nat. x < ereal (real n))"proof (cases x) case (real r) then show ?thesis using reals_Archimedean2[of r] by simpqed simp_alllemma ereal_add_strict_mono2: fixes a b c d :: ereal assumes "a < b" and "c < d" shows "a + c < b + d"using assmsapply (cases a)apply (cases rule: ereal3_cases[of b c d], auto)apply (cases rule: ereal3_cases[of b c d], auto)donelemma ereal_minus_le_minus[simp]: fixes a b :: ereal shows "- a \<le> - b \<longleftrightarrow> b \<le> a" by (cases rule: ereal2_cases[of a b]) autolemma ereal_minus_less_minus[simp]: fixes a b :: ereal shows "- a < - b \<longleftrightarrow> b < a" by (cases rule: ereal2_cases[of a b]) autolemma ereal_le_real_iff: "x \<le> real_of_ereal y \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x \<le> y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x \<le> 0)" by (cases y) autolemma real_le_ereal_iff: "real_of_ereal y \<le> x \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y \<le> ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 \<le> x)" by (cases y) autolemma ereal_less_real_iff: "x < real_of_ereal y \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x < y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x < 0)" by (cases y) autolemma real_less_ereal_iff: "real_of_ereal y < x \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y < ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 < x)" by (cases y) autotext \<open> To help with inferences like \<^prop>\<open>a < ereal x \<Longrightarrow> x < y \<Longrightarrow> a < ereal y\<close>, where x and y are real.\<close>lemma le_ereal_le: "a \<le> ereal x \<Longrightarrow> x \<le> y \<Longrightarrow> a \<le> ereal y" using ereal_less_eq(3) order.trans by blastlemma le_ereal_less: "a \<le> ereal x \<Longrightarrow> x < y \<Longrightarrow> a < ereal y" by (simp add: le_less_trans)lemma less_ereal_le: "a < ereal x \<Longrightarrow> x \<le> y \<Longrightarrow> a < ereal y" using ereal_less_ereal_Ex by autolemma ereal_le_le: "ereal y \<le> a \<Longrightarrow> x \<le> y \<Longrightarrow> ereal x \<le> a" by (simp add: order_subst2)lemma ereal_le_less: "ereal y \<le> a \<Longrightarrow> x < y \<Longrightarrow> ereal x < a" by (simp add: dual_order.strict_trans1)lemma ereal_less_le: "ereal y < a \<Longrightarrow> x \<le> y \<Longrightarrow> ereal x < a" using ereal_less_eq(3) le_less_trans by blastlemma real_of_ereal_pos: fixes x :: ereal shows "0 \<le> x \<Longrightarrow> 0 \<le> real_of_ereal x" by (cases x) autolemmas real_of_ereal_ord_simps = ereal_le_real_iff real_le_ereal_iff ereal_less_real_iff real_less_ereal_ifflemma abs_ereal_ge0[simp]: "0 \<le> x \<Longrightarrow> \<bar>x :: ereal\<bar> = x" by (cases x) autolemma abs_ereal_less0[simp]: "x < 0 \<Longrightarrow> \<bar>x :: ereal\<bar> = -x" by (cases x) autolemma abs_ereal_pos[simp]: "0 \<le> \<bar>x :: ereal\<bar>" by (cases x) autolemma ereal_abs_leI: fixes x y :: ereal shows "\<lbrakk> x \<le> y; -x \<le> y \<rbrakk> \<Longrightarrow> \<bar>x\<bar> \<le> y"by(cases x y rule: ereal2_cases)(simp_all)lemma ereal_abs_add: fixes a b::ereal shows "abs(a+b) \<le> abs a + abs b"by (cases rule: ereal2_cases[of a b]) (auto)lemma real_of_ereal_le_0[simp]: "real_of_ereal (x :: ereal) \<le> 0 \<longleftrightarrow> x \<le> 0 \<or> x = \<infinity>" by (cases x) autolemma abs_real_of_ereal[simp]: "\<bar>real_of_ereal (x :: ereal)\<bar> = real_of_ereal \<bar>x\<bar>" by (cases x) autolemma zero_less_real_of_ereal: fixes x :: ereal shows "0 < real_of_ereal x \<longleftrightarrow> 0 < x \<and> x \<noteq> \<infinity>" by (cases x) autolemma ereal_0_le_uminus_iff[simp]: fixes a :: ereal shows "0 \<le> - a \<longleftrightarrow> a \<le> 0" by (cases rule: ereal2_cases[of a]) autolemma ereal_uminus_le_0_iff[simp]: fixes a :: ereal shows "- a \<le> 0 \<longleftrightarrow> 0 \<le> a" by (cases rule: ereal2_cases[of a]) autolemma ereal_add_strict_mono: fixes a b c d :: ereal assumes "a \<le> b" and "0 \<le> a" and "a \<noteq> \<infinity>" and "c < d" shows "a + c < b + d" using assms by (cases rule: ereal3_cases[case_product ereal_cases, of a b c d]) autolemma ereal_less_add: fixes a b c :: ereal shows "\<bar>a\<bar> \<noteq> \<infinity> \<Longrightarrow> c < b \<Longrightarrow> a + c < a + b" by (cases rule: ereal2_cases[of b c]) autolemma ereal_add_nonneg_eq_0_iff: fixes a b :: ereal shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a + b = 0 \<longleftrightarrow> a = 0 \<and> b = 0" by (cases a b rule: ereal2_cases) autolemma ereal_uminus_eq_reorder: "- a = b \<longleftrightarrow> a = (-b::ereal)" by autolemma ereal_uminus_less_reorder: "- a < b \<longleftrightarrow> -b < (a::ereal)" by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_less_minus)lemma ereal_less_uminus_reorder: "a < - b \<longleftrightarrow> b < - (a::ereal)" by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_less_minus)lemma ereal_uminus_le_reorder: "- a \<le> b \<longleftrightarrow> -b \<le> (a::ereal)" by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_le_minus)lemmas ereal_uminus_reorder = ereal_uminus_eq_reorder ereal_uminus_less_reorder ereal_uminus_le_reorderlemma ereal_bot: fixes x :: ereal assumes "\<And>B. x \<le> ereal B" shows "x = - \<infinity>"proof (cases x) case (real r) with assms[of "r - 1"] show ?thesis by autonext case PInf with assms[of 0] show ?thesis by autonext case MInf then show ?thesis by simpqedlemma ereal_top: fixes x :: ereal assumes "\<And>B. x \<ge> ereal B" shows "x = \<infinity>"proof (cases x) case (real r) with assms[of "r + 1"] show ?thesis by autonext case MInf with assms[of 0] show ?thesis by autonext case PInf then show ?thesis by simpqedlemma shows ereal_max[simp]: "ereal (max x y) = max (ereal x) (ereal y)" and ereal_min[simp]: "ereal (min x y) = min (ereal x) (ereal y)" by (simp_all add: min_def max_def)lemma ereal_max_0: "max 0 (ereal r) = ereal (max 0 r)" by (auto simp: zero_ereal_def)lemma fixes f :: "nat \<Rightarrow> ereal" shows ereal_incseq_uminus[simp]: "incseq (\<lambda>x. - f x) \<longleftrightarrow> decseq f" and ereal_decseq_uminus[simp]: "decseq (\<lambda>x. - f x) \<longleftrightarrow> incseq f" unfolding decseq_def incseq_def by autolemma incseq_ereal: "incseq f \<Longrightarrow> incseq (\<lambda>x. ereal (f x))" unfolding incseq_def by autolemma sum_ereal[simp]: "(\<Sum>x\<in>A. ereal (f x)) = ereal (\<Sum>x\<in>A. f x)"proof (cases "finite A") case True then show ?thesis by induct autonext case False then show ?thesis by simpqedlemma sum_list_ereal [simp]: "sum_list (map (\<lambda>x. ereal (f x)) xs) = ereal (sum_list (map f xs))" by (induction xs) simp_alllemma sum_Pinfty: fixes f :: "'a \<Rightarrow> ereal" shows "(\<Sum>x\<in>P. f x) = \<infinity> \<longleftrightarrow> finite P \<and> (\<exists>i\<in>P. f i = \<infinity>)"proof safe assume *: "sum f P = \<infinity>" show "finite P" proof (rule ccontr) assume "\<not> finite P" with * show False by auto qed show "\<exists>i\<in>P. f i = \<infinity>" proof (rule ccontr) assume "\<not> ?thesis" then have "\<And>i. i \<in> P \<Longrightarrow> f i \<noteq> \<infinity>" by auto with \<open>finite P\<close> have "sum f P \<noteq> \<infinity>" by induct auto with * show False by auto qednext fix i assume "finite P" and "i \<in> P" and "f i = \<infinity>" then show "sum f P = \<infinity>" proof induct case (insert x A) show ?case using insert by (cases "x = i") auto qed simpqedlemma sum_Inf: fixes f :: "'a \<Rightarrow> ereal" shows "\<bar>sum f A\<bar> = \<infinity> \<longleftrightarrow> finite A \<and> (\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>)"proof assume *: "\<bar>sum f A\<bar> = \<infinity>" have "finite A" by (rule ccontr) (insert *, auto) moreover have "\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>" proof (rule ccontr) assume "\<not> ?thesis" then have "\<forall>i\<in>A. \<exists>r. f i = ereal r" by auto from bchoice[OF this] obtain r where "\<forall>x\<in>A. f x = ereal (r x)" .. with * show False by auto qed ultimately show "finite A \<and> (\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>)" by autonext assume "finite A \<and> (\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>)" then obtain i where "finite A" "i \<in> A" and "\<bar>f i\<bar> = \<infinity>" by auto then show "\<bar>sum f A\<bar> = \<infinity>" proof induct case (insert j A) then show ?case by (cases rule: ereal3_cases[of "f i" "f j" "sum f A"]) auto qed simpqedlemma sum_real_of_ereal: fixes f :: "'i \<Rightarrow> ereal" assumes "\<And>x. x \<in> S \<Longrightarrow> \<bar>f x\<bar> \<noteq> \<infinity>" shows "(\<Sum>x\<in>S. real_of_ereal (f x)) = real_of_ereal (sum f S)"proof - have "\<forall>x\<in>S. \<exists>r. f x = ereal r" proof fix x assume "x \<in> S" from assms[OF this] show "\<exists>r. f x = ereal r" by (cases "f x") auto qed from bchoice[OF this] obtain r where "\<forall>x\<in>S. f x = ereal (r x)" .. then show ?thesis by simpqedlemma sum_ereal_0: fixes f :: "'a \<Rightarrow> ereal" assumes "finite A" and "\<And>i. i \<in> A \<Longrightarrow> 0 \<le> f i" shows "(\<Sum>x\<in>A. f x) = 0 \<longleftrightarrow> (\<forall>i\<in>A. f i = 0)"proof assume "sum f A = 0" with assms show "\<forall>i\<in>A. f i = 0" proof (induction A) case (insert a A) then have "f a = 0 \<and> (\<Sum>a\<in>A. f a) = 0" by (subst ereal_add_nonneg_eq_0_iff[symmetric]) (simp_all add: sum_nonneg) with insert show ?case by simp qed simpqed autosubsubsection "Multiplication"instantiation ereal :: "{comm_monoid_mult,sgn}"beginfunction sgn_ereal :: "ereal \<Rightarrow> ereal" where "sgn (ereal r) = ereal (sgn r)"| "sgn (\<infinity>::ereal) = 1"| "sgn (-\<infinity>::ereal) = -1"by (auto intro: ereal_cases)termination by standard (rule wf_empty)function times_ereal where "ereal r * ereal p = ereal (r * p)"| "ereal r * \<infinity> = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)"| "\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)"| "ereal r * -\<infinity> = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)"| "-\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)"| "(\<infinity>::ereal) * \<infinity> = \<infinity>"| "-(\<infinity>::ereal) * \<infinity> = -\<infinity>"| "(\<infinity>::ereal) * -\<infinity> = -\<infinity>"| "-(\<infinity>::ereal) * -\<infinity> = \<infinity>"proof goal_cases case prems: (1 P x) then obtain a b where "x = (a, b)" by (cases x) auto with prems show P by (cases rule: ereal2_cases[of a b]) autoqed simp_alltermination by (relation "{}") simpinstanceproof fix a b c :: ereal show "1 * a = a" by (cases a) (simp_all add: one_ereal_def) show "a * b = b * a" by (cases rule: ereal2_cases[of a b]) simp_all show "a * b * c = a * (b * c)" by (cases rule: ereal3_cases[of a b c]) (simp_all add: zero_ereal_def zero_less_mult_iff)qedendlemma [simp]: shows ereal_1_times: "ereal 1 * x = x" and times_ereal_1: "x * ereal 1 = x"by(simp_all flip: one_ereal_def)lemma one_not_le_zero_ereal[simp]: "\<not> (1 \<le> (0::ereal))" by (simp add: one_ereal_def zero_ereal_def)lemma real_ereal_1[simp]: "real_of_ereal (1::ereal) = 1" unfolding one_ereal_def by simplemma real_of_ereal_le_1: fixes a :: ereal shows "a \<le> 1 \<Longrightarrow> real_of_ereal a \<le> 1" by (cases a) (auto simp: one_ereal_def)lemma abs_ereal_one[simp]: "\<bar>1\<bar> = (1::ereal)" unfolding one_ereal_def by simplemma ereal_mult_zero[simp]: fixes a :: ereal shows "a * 0 = 0" by (cases a) (simp_all add: zero_ereal_def)lemma ereal_zero_mult[simp]: fixes a :: ereal shows "0 * a = 0" by (cases a) (simp_all add: zero_ereal_def)lemma ereal_m1_less_0[simp]: "-(1::ereal) < 0" by (simp add: zero_ereal_def one_ereal_def)lemma ereal_times[simp]: "1 \<noteq> (\<infinity>::ereal)" "(\<infinity>::ereal) \<noteq> 1" "1 \<noteq> -(\<infinity>::ereal)" "-(\<infinity>::ereal) \<noteq> 1" by (auto simp: one_ereal_def)lemma ereal_plus_1[simp]: "1 + ereal r = ereal (r + 1)" "ereal r + 1 = ereal (r + 1)" "1 + -(\<infinity>::ereal) = -\<infinity>" "-(\<infinity>::ereal) + 1 = -\<infinity>" unfolding one_ereal_def by autolemma ereal_zero_times[simp]: fixes a b :: ereal shows "a * b = 0 \<longleftrightarrow> a = 0 \<or> b = 0" by (cases rule: ereal2_cases[of a b]) autolemma ereal_mult_eq_PInfty[simp]: "a * b = (\<infinity>::ereal) \<longleftrightarrow> (a = \<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = -\<infinity>)" by (cases rule: ereal2_cases[of a b]) autolemma ereal_mult_eq_MInfty[simp]: "a * b = -(\<infinity>::ereal) \<longleftrightarrow> (a = \<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = -\<infinity>)" by (cases rule: ereal2_cases[of a b]) autolemma ereal_abs_mult: "\<bar>x * y :: ereal\<bar> = \<bar>x\<bar> * \<bar>y\<bar>" by (cases x y rule: ereal2_cases) (auto simp: abs_mult)lemma ereal_0_less_1[simp]: "0 < (1::ereal)" by (simp_all add: zero_ereal_def one_ereal_def)lemma ereal_mult_minus_left[simp]: fixes a b :: ereal shows "-a * b = - (a * b)" by (cases rule: ereal2_cases[of a b]) autolemma ereal_mult_minus_right[simp]: fixes a b :: ereal shows "a * -b = - (a * b)" by (cases rule: ereal2_cases[of a b]) autolemma ereal_mult_infty[simp]: "a * (\<infinity>::ereal) = (if a = 0 then 0 else if 0 < a then \<infinity> else - \<infinity>)" by (cases a) autolemma ereal_infty_mult[simp]: "(\<infinity>::ereal) * a = (if a = 0 then 0 else if 0 < a then \<infinity> else - \<infinity>)" by (cases a) autolemma ereal_mult_strict_right_mono: assumes "a < b" and "0 < c" and "c < (\<infinity>::ereal)" shows "a * c < b * c" using assms by (cases rule: ereal3_cases[of a b c]) (auto simp: zero_le_mult_iff)lemma ereal_mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c < (\<infinity>::ereal) \<Longrightarrow> c * a < c * b" using ereal_mult_strict_right_mono by (simp add: mult.commute[of c])lemma ereal_mult_right_mono: fixes a b c :: ereal shows "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c" apply (cases "c = 0") apply simp apply (cases rule: ereal3_cases[of a b c]) apply (auto simp: zero_le_mult_iff) donelemma ereal_mult_left_mono: fixes a b c :: ereal shows "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" using ereal_mult_right_mono by (simp add: mult.commute[of c])lemma ereal_mult_mono: fixes a b c d::ereal assumes "b \<ge> 0" "c \<ge> 0" "a \<le> b" "c \<le> d" shows "a * c \<le> b * d"by (metis ereal_mult_right_mono mult.commute order_trans assms)lemma ereal_mult_mono': fixes a b c d::ereal assumes "a \<ge> 0" "c \<ge> 0" "a \<le> b" "c \<le> d" shows "a * c \<le> b * d"by (metis ereal_mult_right_mono mult.commute order_trans assms)lemma ereal_mult_mono_strict: fixes a b c d::ereal assumes "b > 0" "c > 0" "a < b" "c < d" shows "a * c < b * d"proof - have "c < \<infinity>" using \<open>c < d\<close> by auto then have "a * c < b * c" by (metis ereal_mult_strict_left_mono[OF assms(3) assms(2)] mult.commute) moreover have "b * c \<le> b * d" using assms(2) assms(4) by (simp add: assms(1) ereal_mult_left_mono less_imp_le) ultimately show ?thesis by simpqedlemma ereal_mult_mono_strict': fixes a b c d::ereal assumes "a > 0" "c > 0" "a < b" "c < d" shows "a * c < b * d"apply (rule ereal_mult_mono_strict, auto simp add: assms) using assms by autolemma zero_less_one_ereal[simp]: "0 \<le> (1::ereal)" by (simp add: one_ereal_def zero_ereal_def)lemma ereal_0_le_mult[simp]: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * (b :: ereal)" by (cases rule: ereal2_cases[of a b]) autolemma ereal_right_distrib: fixes r a b :: ereal shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> r * (a + b) = r * a + r * b" by (cases rule: ereal3_cases[of r a b]) (simp_all add: field_simps)lemma ereal_left_distrib: fixes r a b :: ereal shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> (a + b) * r = a * r + b * r" by (cases rule: ereal3_cases[of r a b]) (simp_all add: field_simps)lemma ereal_mult_le_0_iff: fixes a b :: ereal shows "a * b \<le> 0 \<longleftrightarrow> (0 \<le> a \<and> b \<le> 0) \<or> (a \<le> 0 \<and> 0 \<le> b)" by (cases rule: ereal2_cases[of a b]) (simp_all add: mult_le_0_iff)lemma ereal_zero_le_0_iff: fixes a b :: ereal shows "0 \<le> a * b \<longleftrightarrow> (0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0)" by (cases rule: ereal2_cases[of a b]) (simp_all add: zero_le_mult_iff)lemma ereal_mult_less_0_iff: fixes a b :: ereal shows "a * b < 0 \<longleftrightarrow> (0 < a \<and> b < 0) \<or> (a < 0 \<and> 0 < b)" by (cases rule: ereal2_cases[of a b]) (simp_all add: mult_less_0_iff)lemma ereal_zero_less_0_iff: fixes a b :: ereal shows "0 < a * b \<longleftrightarrow> (0 < a \<and> 0 < b) \<or> (a < 0 \<and> b < 0)" by (cases rule: ereal2_cases[of a b]) (simp_all add: zero_less_mult_iff)lemma ereal_left_mult_cong: fixes a b c :: ereal shows "c = d \<Longrightarrow> (d \<noteq> 0 \<Longrightarrow> a = b) \<Longrightarrow> a * c = b * d" by (cases "c = 0") simp_alllemma ereal_right_mult_cong: fixes a b c :: ereal shows "c = d \<Longrightarrow> (d \<noteq> 0 \<Longrightarrow> a = b) \<Longrightarrow> c * a = d * b" by (cases "c = 0") simp_alllemma ereal_distrib: fixes a b c :: ereal assumes "a \<noteq> \<infinity> \<or> b \<noteq> -\<infinity>" and "a \<noteq> -\<infinity> \<or> b \<noteq> \<infinity>" and "\<bar>c\<bar> \<noteq> \<infinity>" shows "(a + b) * c = a * c + b * c" using assms by (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps)lemma numeral_eq_ereal [simp]: "numeral w = ereal (numeral w)" apply (induct w rule: num_induct) apply (simp only: numeral_One one_ereal_def) apply (simp only: numeral_inc ereal_plus_1) donelemma distrib_left_ereal_nn: "c \<ge> 0 \<Longrightarrow> (x + y) * ereal c = x * ereal c + y * ereal c"by(cases x y rule: ereal2_cases)(simp_all add: ring_distribs)lemma sum_ereal_right_distrib: fixes f :: "'a \<Rightarrow> ereal" shows "(\<And>i. i \<in> A \<Longrightarrow> 0 \<le> f i) \<Longrightarrow> r * sum f A = (\<Sum>n\<in>A. r * f n)" by (induct A rule: infinite_finite_induct) (auto simp: ereal_right_distrib sum_nonneg)lemma sum_ereal_left_distrib: "(\<And>i. i \<in> A \<Longrightarrow> 0 \<le> f i) \<Longrightarrow> sum f A * r = (\<Sum>n\<in>A. f n * r :: ereal)" using sum_ereal_right_distrib[of A f r] by (simp add: mult_ac)lemma sum_distrib_right_ereal: "c \<ge> 0 \<Longrightarrow> sum f A * ereal c = (\<Sum>x\<in>A. f x * c :: ereal)"by(subst sum_comp_morphism[where h="\<lambda>x. x * ereal c", symmetric])(simp_all add: distrib_left_ereal_nn)lemma ereal_le_epsilon: fixes x y :: ereal assumes "\<forall>e. 0 < e \<longrightarrow> x \<le> y + e" shows "x \<le> y"proof - { assume a: "\<exists>r. y = ereal r" then obtain r where r_def: "y = ereal r" by auto { assume "x = -\<infinity>" then have ?thesis by auto } moreover { assume "x \<noteq> -\<infinity>" then obtain p where p_def: "x = ereal p" using a assms[rule_format, of 1] by (cases x) auto { fix e have "0 < e \<longrightarrow> p \<le> r + e" using assms[rule_format, of "ereal e"] p_def r_def by auto } then have "p \<le> r" apply (subst field_le_epsilon) apply auto done then have ?thesis using r_def p_def by auto } ultimately have ?thesis by blast } moreover { assume "y = -\<infinity> \<or> y = \<infinity>" then have ?thesis using assms[rule_format, of 1] by (cases x) auto } ultimately show ?thesis by (cases y) autoqedlemma ereal_le_epsilon2: fixes x y :: ereal assumes "\<forall>e. 0 < e \<longrightarrow> x \<le> y + ereal e" shows "x \<le> y"proof - { fix e :: ereal assume "e > 0" { assume "e = \<infinity>" then have "x \<le> y + e" by auto } moreover { assume "e \<noteq> \<infinity>" then obtain r where "e = ereal r" using \<open>e > 0\<close> by (cases e) auto then have "x \<le> y + e" using assms[rule_format, of r] \<open>e>0\<close> by auto } ultimately have "x \<le> y + e" by blast } then show ?thesis using ereal_le_epsilon by autoqedlemma ereal_le_real: fixes x y :: ereal assumes "\<forall>z. x \<le> ereal z \<longrightarrow> y \<le> ereal z" shows "y \<le> x" by (metis assms ereal_bot ereal_cases ereal_infty_less_eq(2) ereal_less_eq(1) linorder_le_cases)lemma prod_ereal_0: fixes f :: "'a \<Rightarrow> ereal" shows "(\<Prod>i\<in>A. f i) = 0 \<longleftrightarrow> finite A \<and> (\<exists>i\<in>A. f i = 0)"proof (cases "finite A") case True then show ?thesis by (induct A) autonext case False then show ?thesis by autoqedlemma prod_ereal_pos: fixes f :: "'a \<Rightarrow> ereal" assumes pos: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" shows "0 \<le> (\<Prod>i\<in>I. f i)"proof (cases "finite I") case True from this pos show ?thesis by induct autonext case False then show ?thesis by simpqedlemma prod_PInf: fixes f :: "'a \<Rightarrow> ereal" assumes "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" shows "(\<Prod>i\<in>I. f i) = \<infinity> \<longleftrightarrow> finite I \<and> (\<exists>i\<in>I. f i = \<infinity>) \<and> (\<forall>i\<in>I. f i \<noteq> 0)"proof (cases "finite I") case True from this assms show ?thesis proof (induct I) case (insert i I) then have pos: "0 \<le> f i" "0 \<le> prod f I" by (auto intro!: prod_ereal_pos) from insert have "(\<Prod>j\<in>insert i I. f j) = \<infinity> \<longleftrightarrow> prod f I * f i = \<infinity>" by auto also have "\<dots> \<longleftrightarrow> (prod f I = \<infinity> \<or> f i = \<infinity>) \<and> f i \<noteq> 0 \<and> prod f I \<noteq> 0" using prod_ereal_pos[of I f] pos by (cases rule: ereal2_cases[of "f i" "prod f I"]) auto also have "\<dots> \<longleftrightarrow> finite (insert i I) \<and> (\<exists>j\<in>insert i I. f j = \<infinity>) \<and> (\<forall>j\<in>insert i I. f j \<noteq> 0)" using insert by (auto simp: prod_ereal_0) finally show ?case . qed simpnext case False then show ?thesis by simpqedlemma prod_ereal: "(\<Prod>i\<in>A. ereal (f i)) = ereal (prod f A)"proof (cases "finite A") case True then show ?thesis by induct (auto simp: one_ereal_def)next case False then show ?thesis by (simp add: one_ereal_def)qedsubsubsection \<open>Power\<close>lemma ereal_power[simp]: "(ereal x) ^ n = ereal (x^n)" by (induct n) (auto simp: one_ereal_def)lemma ereal_power_PInf[simp]: "(\<infinity>::ereal) ^ n = (if n = 0 then 1 else \<infinity>)" by (induct n) (auto simp: one_ereal_def)lemma ereal_power_uminus[simp]: fixes x :: ereal shows "(- x) ^ n = (if even n then x ^ n else - (x^n))" by (induct n) (auto simp: one_ereal_def)lemma ereal_power_numeral[simp]: "(numeral num :: ereal) ^ n = ereal (numeral num ^ n)" by (induct n) (auto simp: one_ereal_def)lemma zero_le_power_ereal[simp]: fixes a :: ereal assumes "0 \<le> a" shows "0 \<le> a ^ n" using assms by (induct n) (auto simp: ereal_zero_le_0_iff)subsubsection \<open>Subtraction\<close>lemma ereal_minus_minus_image[simp]: fixes S :: "ereal set" shows "uminus ` uminus ` S = S" by (auto simp: image_iff)lemma ereal_uminus_lessThan[simp]: fixes a :: ereal shows "uminus ` {..<a} = {-a<..}"proof - { fix x assume "-a < x" then have "- x < - (- a)" by (simp del: ereal_uminus_uminus) then have "- x < a" by simp } then show ?thesis by forceqedlemma ereal_uminus_greaterThan[simp]: "uminus ` {(a::ereal)<..} = {..<-a}" by (metis ereal_uminus_lessThan ereal_uminus_uminus ereal_minus_minus_image)instantiation ereal :: minusbegindefinition "x - y = x + -(y::ereal)"instance ..endlemma ereal_minus[simp]: "ereal r - ereal p = ereal (r - p)" "-\<infinity> - ereal r = -\<infinity>" "ereal r - \<infinity> = -\<infinity>" "(\<infinity>::ereal) - x = \<infinity>" "-(\<infinity>::ereal) - \<infinity> = -\<infinity>" "x - -y = x + y" "x - 0 = x" "0 - x = -x" by (simp_all add: minus_ereal_def)lemma ereal_x_minus_x[simp]: "x - x = (if \<bar>x\<bar> = \<infinity> then \<infinity> else 0::ereal)" by (cases x) simp_alllemma ereal_eq_minus_iff: fixes x y z :: ereal shows "x = z - y \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y = z) \<and> (y = -\<infinity> \<longrightarrow> x = \<infinity>) \<and> (y = \<infinity> \<longrightarrow> z = \<infinity> \<longrightarrow> x = \<infinity>) \<and> (y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>)" by (cases rule: ereal3_cases[of x y z]) autolemma ereal_eq_minus: fixes x y z :: ereal shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x = z - y \<longleftrightarrow> x + y = z" by (auto simp: ereal_eq_minus_iff)lemma ereal_less_minus_iff: fixes x y z :: ereal shows "x < z - y \<longleftrightarrow> (y = \<infinity> \<longrightarrow> z = \<infinity> \<and> x \<noteq> \<infinity>) \<and> (y = -\<infinity> \<longrightarrow> x \<noteq> \<infinity>) \<and> (\<bar>y\<bar> \<noteq> \<infinity>\<longrightarrow> x + y < z)" by (cases rule: ereal3_cases[of x y z]) autolemma ereal_less_minus: fixes x y z :: ereal shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x < z - y \<longleftrightarrow> x + y < z" by (auto simp: ereal_less_minus_iff)lemma ereal_le_minus_iff: fixes x y z :: ereal shows "x \<le> z - y \<longleftrightarrow> (y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>) \<and> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y \<le> z)" by (cases rule: ereal3_cases[of x y z]) autolemma ereal_le_minus: fixes x y z :: ereal shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x \<le> z - y \<longleftrightarrow> x + y \<le> z" by (auto simp: ereal_le_minus_iff)lemma ereal_minus_less_iff: fixes x y z :: ereal shows "x - y < z \<longleftrightarrow> y \<noteq> -\<infinity> \<and> (y = \<infinity> \<longrightarrow> x \<noteq> \<infinity> \<and> z \<noteq> -\<infinity>) \<and> (y \<noteq> \<infinity> \<longrightarrow> x < z + y)" by (cases rule: ereal3_cases[of x y z]) autolemma ereal_minus_less: fixes x y z :: ereal shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x - y < z \<longleftrightarrow> x < z + y" by (auto simp: ereal_minus_less_iff)lemma ereal_minus_le_iff: fixes x y z :: ereal shows "x - y \<le> z \<longleftrightarrow> (y = -\<infinity> \<longrightarrow> z = \<infinity>) \<and> (y = \<infinity> \<longrightarrow> x = \<infinity> \<longrightarrow> z = \<infinity>) \<and> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x \<le> z + y)" by (cases rule: ereal3_cases[of x y z]) autolemma ereal_minus_le: fixes x y z :: ereal shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x - y \<le> z \<longleftrightarrow> x \<le> z + y" by (auto simp: ereal_minus_le_iff)lemma ereal_minus_eq_minus_iff: fixes a b c :: ereal shows "a - b = a - c \<longleftrightarrow> b = c \<or> a = \<infinity> \<or> (a = -\<infinity> \<and> b \<noteq> -\<infinity> \<and> c \<noteq> -\<infinity>)" by (cases rule: ereal3_cases[of a b c]) autolemma ereal_add_le_add_iff: fixes a b c :: ereal shows "c + a \<le> c + b \<longleftrightarrow> a \<le> b \<or> c = \<infinity> \<or> (c = -\<infinity> \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>)" by (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps)lemma ereal_add_le_add_iff2: fixes a b c :: ereal shows "a + c \<le> b + c \<longleftrightarrow> a \<le> b \<or> c = \<infinity> \<or> (c = -\<infinity> \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>)"by(cases rule: ereal3_cases[of a b c])(simp_all add: field_simps)lemma ereal_mult_le_mult_iff: fixes a b c :: ereal shows "\<bar>c\<bar> \<noteq> \<infinity> \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" by (cases rule: ereal3_cases[of a b c]) (simp_all add: mult_le_cancel_left)lemma ereal_minus_mono: fixes A B C D :: ereal assumes "A \<le> B" "D \<le> C" shows "A - C \<le> B - D" using assms by (cases rule: ereal3_cases[case_product ereal_cases, of A B C D]) simp_alllemma ereal_mono_minus_cancel: fixes a b c :: ereal shows "c - a \<le> c - b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c < \<infinity> \<Longrightarrow> b \<le> a" by (cases a b c rule: ereal3_cases) autolemma real_of_ereal_minus: fixes a b :: ereal shows "real_of_ereal (a - b) = (if \<bar>a\<bar> = \<infinity> \<or> \<bar>b\<bar> = \<infinity> then 0 else real_of_ereal a - real_of_ereal b)" by (cases rule: ereal2_cases[of a b]) autolemma real_of_ereal_minus': "\<bar>x\<bar> = \<infinity> \<longleftrightarrow> \<bar>y\<bar> = \<infinity> \<Longrightarrow> real_of_ereal x - real_of_ereal y = real_of_ereal (x - y :: ereal)"by(subst real_of_ereal_minus) autolemma ereal_diff_positive: fixes a b :: ereal shows "a \<le> b \<Longrightarrow> 0 \<le> b - a" by (cases rule: ereal2_cases[of a b]) autolemma ereal_between: fixes x e :: ereal assumes "\<bar>x\<bar> \<noteq> \<infinity>" and "0 < e" shows "x - e < x" and "x < x + e" using assms apply (cases x, cases e) apply auto using assms apply (cases x, cases e) apply auto donelemma ereal_minus_eq_PInfty_iff: fixes x y :: ereal shows "x - y = \<infinity> \<longleftrightarrow> y = -\<infinity> \<or> x = \<infinity>" by (cases x y rule: ereal2_cases) simp_alllemma ereal_diff_add_eq_diff_diff_swap: fixes x y z :: ereal shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x - (y + z) = x - y - z"by(cases x y z rule: ereal3_cases) simp_alllemma ereal_diff_add_assoc2: fixes x y z :: ereal shows "x + y - z = x - z + y"by(cases x y z rule: ereal3_cases) simp_alllemma ereal_add_uminus_conv_diff: fixes x y z :: ereal shows "- x + y = y - x"by(cases x y rule: ereal2_cases) simp_alllemma ereal_minus_diff_eq: fixes x y :: ereal shows "\<lbrakk> x = \<infinity> \<longrightarrow> y \<noteq> \<infinity>; x = -\<infinity> \<longrightarrow> y \<noteq> - \<infinity> \<rbrakk> \<Longrightarrow> - (x - y) = y - x"by(cases x y rule: ereal2_cases) simp_alllemma ediff_le_self [simp]: "x - y \<le> (x :: enat)"by(cases x y rule: enat.exhaust[case_product enat.exhaust]) simp_alllemma ereal_abs_diff: fixes a b::ereal shows "abs(a-b) \<le> abs a + abs b"by (cases rule: ereal2_cases[of a b]) (auto)subsubsection \<open>Division\<close>instantiation ereal :: inversebeginfunction inverse_ereal where "inverse (ereal r) = (if r = 0 then \<infinity> else ereal (inverse r))"| "inverse (\<infinity>::ereal) = 0"| "inverse (-\<infinity>::ereal) = 0" by (auto intro: ereal_cases)termination by (relation "{}") simpdefinition "x div y = x * inverse (y :: ereal)"instance ..endlemma real_of_ereal_inverse[simp]: fixes a :: ereal shows "real_of_ereal (inverse a) = 1 / real_of_ereal a" by (cases a) (auto simp: inverse_eq_divide)lemma ereal_inverse[simp]: "inverse (0::ereal) = \<infinity>" "inverse (1::ereal) = 1" by (simp_all add: one_ereal_def zero_ereal_def)lemma ereal_divide[simp]: "ereal r / ereal p = (if p = 0 then ereal r * \<infinity> else ereal (r / p))" unfolding divide_ereal_def by (auto simp: divide_real_def)lemma ereal_divide_same[simp]: fixes x :: ereal shows "x / x = (if \<bar>x\<bar> = \<infinity> \<or> x = 0 then 0 else 1)" by (cases x) (simp_all add: divide_real_def divide_ereal_def one_ereal_def)lemma ereal_inv_inv[simp]: fixes x :: ereal shows "inverse (inverse x) = (if x \<noteq> -\<infinity> then x else \<infinity>)" by (cases x) autolemma ereal_inverse_minus[simp]: fixes x :: ereal shows "inverse (- x) = (if x = 0 then \<infinity> else -inverse x)" by (cases x) simp_alllemma ereal_uminus_divide[simp]: fixes x y :: ereal shows "- x / y = - (x / y)" unfolding divide_ereal_def by simplemma ereal_divide_Infty[simp]: fixes x :: ereal shows "x / \<infinity> = 0" "x / -\<infinity> = 0" unfolding divide_ereal_def by simp_alllemma ereal_divide_one[simp]: "x / 1 = (x::ereal)" unfolding divide_ereal_def by simplemma ereal_divide_ereal[simp]: "\<infinity> / ereal r = (if 0 \<le> r then \<infinity> else -\<infinity>)" unfolding divide_ereal_def by simplemma ereal_inverse_nonneg_iff: "0 \<le> inverse (x :: ereal) \<longleftrightarrow> 0 \<le> x \<or> x = -\<infinity>" by (cases x) autolemma inverse_ereal_ge0I: "0 \<le> (x :: ereal) \<Longrightarrow> 0 \<le> inverse x"by(cases x) simp_alllemma zero_le_divide_ereal[simp]: fixes a :: ereal assumes "0 \<le> a" and "0 \<le> b" shows "0 \<le> a / b" using assms by (cases rule: ereal2_cases[of a b]) (auto simp: zero_le_divide_iff)lemma ereal_le_divide_pos: fixes x y z :: ereal shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> x * y \<le> z" by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)lemma ereal_divide_le_pos: fixes x y z :: ereal shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> z \<le> x * y" by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)lemma ereal_le_divide_neg: fixes x y z :: ereal shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> z \<le> x * y" by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)lemma ereal_divide_le_neg: fixes x y z :: ereal shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> x * y \<le> z" by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)lemma ereal_inverse_antimono_strict: fixes x y :: ereal shows "0 \<le> x \<Longrightarrow> x < y \<Longrightarrow> inverse y < inverse x" by (cases rule: ereal2_cases[of x y]) autolemma ereal_inverse_antimono: fixes x y :: ereal shows "0 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> inverse y \<le> inverse x" by (cases rule: ereal2_cases[of x y]) autolemma inverse_inverse_Pinfty_iff[simp]: fixes x :: ereal shows "inverse x = \<infinity> \<longleftrightarrow> x = 0" by (cases x) autolemma ereal_inverse_eq_0: fixes x :: ereal shows "inverse x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity>" by (cases x) autolemma ereal_0_gt_inverse: fixes x :: ereal shows "0 < inverse x \<longleftrightarrow> x \<noteq> \<infinity> \<and> 0 \<le> x" by (cases x) autolemma ereal_inverse_le_0_iff: fixes x :: ereal shows "inverse x \<le> 0 \<longleftrightarrow> x < 0 \<or> x = \<infinity>" by(cases x) autolemma ereal_divide_eq_0_iff: "x / y = 0 \<longleftrightarrow> x = 0 \<or> \<bar>y :: ereal\<bar> = \<infinity>"by(cases x y rule: ereal2_cases) simp_alllemma ereal_mult_less_right: fixes a b c :: ereal assumes "b * a < c * a" and "0 < a" and "a < \<infinity>" shows "b < c" using assms by (cases rule: ereal3_cases[of a b c]) (auto split: if_split_asm simp: zero_less_mult_iff zero_le_mult_iff)lemma ereal_mult_divide: fixes a b :: ereal shows "0 < b \<Longrightarrow> b < \<infinity> \<Longrightarrow> b * (a / b) = a" by (cases a b rule: ereal2_cases) autolemma ereal_power_divide: fixes x y :: ereal shows "y \<noteq> 0 \<Longrightarrow> (x / y) ^ n = x^n / y^n" by (cases rule: ereal2_cases [of x y]) (auto simp: one_ereal_def zero_ereal_def power_divide zero_le_power_eq)lemma ereal_le_mult_one_interval: fixes x y :: ereal assumes y: "y \<noteq> -\<infinity>" assumes z: "\<And>z. 0 < z \<Longrightarrow> z < 1 \<Longrightarrow> z * x \<le> y" shows "x \<le> y"proof (cases x) case PInf with z[of "1 / 2"] show "x \<le> y" by (simp add: one_ereal_def)next case (real r) note r = this show "x \<le> y" proof (cases y) case (real p) note p = this have "r \<le> p" proof (rule field_le_mult_one_interval) fix z :: real assume "0 < z" and "z < 1" with z[of "ereal z"] show "z * r \<le> p" using p r by (auto simp: zero_le_mult_iff one_ereal_def) qed then show "x \<le> y" using p r by simp qed (insert y, simp_all)qed simplemma ereal_divide_right_mono[simp]: fixes x y z :: ereal assumes "x \<le> y" and "0 < z" shows "x / z \<le> y / z" using assms by (cases x y z rule: ereal3_cases) (auto intro: divide_right_mono)lemma ereal_divide_left_mono[simp]: fixes x y z :: ereal assumes "y \<le> x" and "0 < z" and "0 < x * y" shows "z / x \<le> z / y" using assms by (cases x y z rule: ereal3_cases) (auto intro: divide_left_mono simp: field_simps zero_less_mult_iff mult_less_0_iff split: if_split_asm)lemma ereal_divide_zero_left[simp]: fixes a :: ereal shows "0 / a = 0" by (cases a) (auto simp: zero_ereal_def)lemma ereal_times_divide_eq_left[simp]: fixes a b c :: ereal shows "b / c * a = b * a / c" by (cases a b c rule: ereal3_cases) (auto simp: field_simps zero_less_mult_iff mult_less_0_iff)lemma ereal_times_divide_eq: "a * (b / c :: ereal) = a * b / c" by (cases a b c rule: ereal3_cases) (auto simp: field_simps zero_less_mult_iff)lemma ereal_inverse_real [simp]: "\<bar>z\<bar> \<noteq> \<infinity> \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> ereal (inverse (real_of_ereal z)) = inverse z" by autolemma ereal_inverse_mult: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> inverse (a * (b::ereal)) = inverse a * inverse b" by (cases a; cases b) autolemma inverse_eq_infinity_iff_eq_zero [simp]: "1/(x::ereal) = \<infinity> \<longleftrightarrow> x = 0"by (simp add: divide_ereal_def)lemma ereal_distrib_left: fixes a b c :: ereal assumes "a \<noteq> \<infinity> \<or> b \<noteq> -\<infinity>" and "a \<noteq> -\<infinity> \<or> b \<noteq> \<infinity>" and "\<bar>c\<bar> \<noteq> \<infinity>" shows "c * (a + b) = c * a + c * b"using assmsby (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps)lemma ereal_distrib_minus_left: fixes a b c :: ereal assumes "a \<noteq> \<infinity> \<or> b \<noteq> \<infinity>" and "a \<noteq> -\<infinity> \<or> b \<noteq> -\<infinity>" and "\<bar>c\<bar> \<noteq> \<infinity>" shows "c * (a - b) = c * a - c * b"using assmsby (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps)lemma ereal_distrib_minus_right: fixes a b c :: ereal assumes "a \<noteq> \<infinity> \<or> b \<noteq> \<infinity>" and "a \<noteq> -\<infinity> \<or> b \<noteq> -\<infinity>" and "\<bar>c\<bar> \<noteq> \<infinity>" shows "(a - b) * c = a * c - b * c"using assmsby (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps)subsection "Complete lattice"instantiation ereal :: latticebegindefinition [simp]: "sup x y = (max x y :: ereal)"definition [simp]: "inf x y = (min x y :: ereal)"instance by standard simp_allendinstantiation ereal :: complete_latticebegindefinition "bot = (-\<infinity>::ereal)"definition "top = (\<infinity>::ereal)"definition "Sup S = (SOME x :: ereal. (\<forall>y\<in>S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>S. y \<le> z) \<longrightarrow> x \<le> z))"definition "Inf S = (SOME x :: ereal. (\<forall>y\<in>S. x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> x))"lemma ereal_complete_Sup: fixes S :: "ereal set" shows "\<exists>x. (\<forall>y\<in>S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>S. y \<le> z) \<longrightarrow> x \<le> z)"proof (cases "\<exists>x. \<forall>a\<in>S. a \<le> ereal x") case True then obtain y where y: "a \<le> ereal y" if "a\<in>S" for a by auto then have "\<infinity> \<notin> S" by force show ?thesis proof (cases "S \<noteq> {-\<infinity>} \<and> S \<noteq> {}") case True with \<open>\<infinity> \<notin> S\<close> obtain x where x: "x \<in> S" "\<bar>x\<bar> \<noteq> \<infinity>" by auto obtain s where s: "\<forall>x\<in>ereal -` S. x \<le> s" "(\<forall>x\<in>ereal -` S. x \<le> z) \<Longrightarrow> s \<le> z" for z proof (atomize_elim, rule complete_real) show "\<exists>x. x \<in> ereal -` S" using x by auto show "\<exists>z. \<forall>x\<in>ereal -` S. x \<le> z" by (auto dest: y intro!: exI[of _ y]) qed show ?thesis proof (safe intro!: exI[of _ "ereal s"]) fix y assume "y \<in> S" with s \<open>\<infinity> \<notin> S\<close> show "y \<le> ereal s" by (cases y) auto next fix z assume "\<forall>y\<in>S. y \<le> z" with \<open>S \<noteq> {-\<infinity>} \<and> S \<noteq> {}\<close> show "ereal s \<le> z" by (cases z) (auto intro!: s) qed next case False then show ?thesis by (auto intro!: exI[of _ "-\<infinity>"]) qednext case False then show ?thesis by (fastforce intro!: exI[of _ \<infinity>] ereal_top intro: order_trans dest: less_imp_le simp: not_le)qedlemma ereal_complete_uminus_eq: fixes S :: "ereal set" shows "(\<forall>y\<in>uminus`S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>uminus`S. y \<le> z) \<longrightarrow> x \<le> z) \<longleftrightarrow> (\<forall>y\<in>S. -x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> -x)" by simp (metis ereal_minus_le_minus ereal_uminus_uminus)lemma ereal_complete_Inf: "\<exists>x. (\<forall>y\<in>S::ereal set. x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> x)" using ereal_complete_Sup[of "uminus ` S"] unfolding ereal_complete_uminus_eq by autoinstanceproof show "Sup {} = (bot::ereal)" apply (auto simp: bot_ereal_def Sup_ereal_def) apply (rule some1_equality) apply (metis ereal_bot ereal_less_eq(2)) apply (metis ereal_less_eq(2)) done show "Inf {} = (top::ereal)" apply (auto simp: top_ereal_def Inf_ereal_def) apply (rule some1_equality) apply (metis ereal_top ereal_less_eq(1)) apply (metis ereal_less_eq(1)) doneqed (auto intro: someI2_ex ereal_complete_Sup ereal_complete_Inf simp: Sup_ereal_def Inf_ereal_def bot_ereal_def top_ereal_def)endinstance ereal :: complete_linorder ..instance ereal :: linear_continuumproof show "\<exists>a b::ereal. a \<noteq> b" using zero_neq_one by blastqedlemma min_PInf [simp]: "min (\<infinity>::ereal) x = x"by (metis min_top top_ereal_def)lemma min_PInf2 [simp]: "min x (\<infinity>::ereal) = x"by (metis min_top2 top_ereal_def)lemma max_PInf [simp]: "max (\<infinity>::ereal) x = \<infinity>"by (metis max_top top_ereal_def)lemma max_PInf2 [simp]: "max x (\<infinity>::ereal) = \<infinity>"by (metis max_top2 top_ereal_def)lemma min_MInf [simp]: "min (-\<infinity>::ereal) x = -\<infinity>"by (metis min_bot bot_ereal_def)lemma min_MInf2 [simp]: "min x (-\<infinity>::ereal) = -\<infinity>"by (metis min_bot2 bot_ereal_def)lemma max_MInf [simp]: "max (-\<infinity>::ereal) x = x"by (metis max_bot bot_ereal_def)lemma max_MInf2 [simp]: "max x (-\<infinity>::ereal) = x"by (metis max_bot2 bot_ereal_def)subsection \<open>Extended real intervals\<close>lemma real_greaterThanLessThan_infinity_eq: "real_of_ereal ` {N::ereal<..<\<infinity>} = (if N = \<infinity> then {} else if N = -\<infinity> then UNIV else {real_of_ereal N<..})"proof - { fix x::real have "x \<in> real_of_ereal ` {- \<infinity><..<\<infinity>::ereal}" by (auto intro!: image_eqI[where x="ereal x"]) } moreover { fix x::ereal assume "N \<noteq> - \<infinity>" "N < x" "x \<noteq> \<infinity>" then have "real_of_ereal N < real_of_ereal x" by (cases N; cases x; simp) } moreover { fix x::real assume "N \<noteq> \<infinity>" "real_of_ereal N < x" then have "x \<in> real_of_ereal ` {N<..<\<infinity>}" by (cases N) (auto intro!: image_eqI[where x="ereal x"]) } ultimately show ?thesis by autoqedlemma real_greaterThanLessThan_minus_infinity_eq: "real_of_ereal ` {-\<infinity><..<N::ereal} = (if N = \<infinity> then UNIV else if N = -\<infinity> then {} else {..<real_of_ereal N})"proof - have "real_of_ereal ` {-\<infinity><..<N::ereal} = uminus ` real_of_ereal ` {-N<..<\<infinity>}" by (auto simp: ereal_uminus_less_reorder intro!: image_eqI[where x="-x" for x]) also note real_greaterThanLessThan_infinity_eq finally show ?thesis by (auto intro!: image_eqI[where x="-x" for x])qedlemma real_greaterThanLessThan_inter: "real_of_ereal ` {N<..<M::ereal} = real_of_ereal ` {-\<infinity><..<M} \<inter> real_of_ereal ` {N<..<\<infinity>}" apply safe subgoal by force subgoal by force subgoal for x y z by (cases y; cases z) (auto intro!: image_eqI[where x=z] simp: ) donelemma real_atLeastGreaterThan_eq: "real_of_ereal ` {N<..<M::ereal} = (if N = \<infinity> then {} else if N = -\<infinity> then (if M = \<infinity> then UNIV else if M = -\<infinity> then {} else {..< real_of_ereal M}) else if M = - \<infinity> then {} else if M = \<infinity> then {real_of_ereal N<..} else {real_of_ereal N <..< real_of_ereal M})" apply (subst real_greaterThanLessThan_inter) apply (subst real_greaterThanLessThan_minus_infinity_eq) apply (subst real_greaterThanLessThan_infinity_eq) apply auto donelemma real_image_ereal_ivl: fixes a b::ereal shows "real_of_ereal ` {a<..<b} = (if a < b then (if a = - \<infinity> then if b = \<infinity> then UNIV else {..<real_of_ereal b} else if b = \<infinity> then {real_of_ereal a<..} else {real_of_ereal a <..< real_of_ereal b}) else {})" by (cases a; cases b; simp add: real_atLeastGreaterThan_eq not_less)lemma fixes a b c::ereal shows not_inftyI: "a < b \<Longrightarrow> b < c \<Longrightarrow> abs b \<noteq> \<infinity>" by forcelemma interval_neqs: fixes r s t::real shows "{r<..<s} \<noteq> {t<..}" and "{r<..<s} \<noteq> {..<t}" and "{r<..<ra} \<noteq> UNIV" and "{r<..} \<noteq> {..<s}" and "{r<..} \<noteq> UNIV" and "{..<r} \<noteq> UNIV" and "{} \<noteq> {r<..}" and "{} \<noteq> {..<r}" subgoal by (metis dual_order.strict_trans greaterThanLessThan_iff greaterThan_iff gt_ex not_le order_refl) subgoal by (metis (no_types, hide_lams) greaterThanLessThan_empty_iff greaterThanLessThan_iff gt_ex lessThan_iff minus_minus neg_less_iff_less not_less order_less_irrefl) subgoal by force subgoal by (metis greaterThanLessThan_empty_iff greaterThanLessThan_eq greaterThan_iff inf.idem lessThan_iff lessThan_non_empty less_irrefl not_le) subgoal by force subgoal by force subgoal using greaterThan_non_empty by blast subgoal using lessThan_non_empty by blast donelemma greaterThanLessThan_eq_iff: fixes r s t u::real shows "({r<..<s} = {t<..<u}) = (r \<ge> s \<and> u \<le> t \<or> r = t \<and> s = u)" by (metis cInf_greaterThanLessThan cSup_greaterThanLessThan greaterThanLessThan_empty_iff not_le)lemma real_of_ereal_image_greaterThanLessThan_iff: "real_of_ereal ` {a <..< b} = real_of_ereal ` {c <..< d} \<longleftrightarrow> (a \<ge> b \<and> c \<ge> d \<or> a = c \<and> b = d)" unfolding real_atLeastGreaterThan_eq by (cases a; cases b; cases c; cases d; simp add: greaterThanLessThan_eq_iff interval_neqs interval_neqs[symmetric])lemma uminus_image_real_of_ereal_image_greaterThanLessThan: "uminus ` real_of_ereal ` {l <..< u} = real_of_ereal ` {-u <..< -l}" by (force simp: algebra_simps ereal_less_uminus_reorder ereal_uminus_less_reorder intro: image_eqI[where x="-x" for x])lemma add_image_real_of_ereal_image_greaterThanLessThan: "(+) c ` real_of_ereal ` {l <..< u} = real_of_ereal ` {c + l <..< c + u}" apply safe subgoal for x using ereal_less_add[of c] by (force simp: real_of_ereal_add add.commute) subgoal for _ x by (force simp: add.commute real_of_ereal_minus ereal_minus_less ereal_less_minus intro: image_eqI[where x="x - c"]) donelemma add2_image_real_of_ereal_image_greaterThanLessThan: "(\<lambda>x. x + c) ` real_of_ereal ` {l <..< u} = real_of_ereal ` {l + c <..< u + c}" using add_image_real_of_ereal_image_greaterThanLessThan[of c l u] by (metis add.commute image_cong)lemma minus_image_real_of_ereal_image_greaterThanLessThan: "(-) c ` real_of_ereal ` {l <..< u} = real_of_ereal ` {c - u <..< c - l}" (is "?l = ?r")proof - have "?l = (+) c ` uminus ` real_of_ereal ` {l <..< u}" by auto also note uminus_image_real_of_ereal_image_greaterThanLessThan also note add_image_real_of_ereal_image_greaterThanLessThan finally show ?thesis by (simp add: minus_ereal_def)qedlemma real_ereal_bound_lemma_up: assumes "s \<in> real_of_ereal ` {a<..<b}" assumes "t \<notin> real_of_ereal ` {a<..<b}" assumes "s \<le> t" shows "b \<noteq> \<infinity>" using assms apply (cases b) subgoal by force subgoal by (metis PInfty_neq_ereal(2) assms dual_order.strict_trans1 ereal_infty_less(1) ereal_less_ereal_Ex greaterThanLessThan_empty_iff greaterThanLessThan_iff greaterThan_iff image_eqI less_imp_le linordered_field_no_ub not_less order_trans real_greaterThanLessThan_infinity_eq real_image_ereal_ivl real_of_ereal.simps(1)) subgoal by force donelemma real_ereal_bound_lemma_down: assumes "s \<in> real_of_ereal ` {a<..<b}" assumes "t \<notin> real_of_ereal ` {a<..<b}" assumes "t \<le> s" shows "a \<noteq> - \<infinity>" using assms apply (cases b) subgoal apply safe using assms(1) apply (auto simp: real_greaterThanLessThan_minus_infinity_eq) done subgoal by (auto simp: real_greaterThanLessThan_minus_infinity_eq) subgoal by auto donesubsection "Topological space"instantiation ereal :: linear_continuum_topologybegindefinition "open_ereal" :: "ereal set \<Rightarrow> bool" where open_ereal_generated: "open_ereal = generate_topology (range lessThan \<union> range greaterThan)"instance by standard (simp add: open_ereal_generated)endlemma continuous_on_ereal[continuous_intros]: assumes f: "continuous_on s f" shows "continuous_on s (\<lambda>x. ereal (f x))" by (rule continuous_on_compose2 [OF continuous_onI_mono[of ereal UNIV] f]) autolemma tendsto_ereal[tendsto_intros, simp, intro]: "(f \<longlongrightarrow> x) F \<Longrightarrow> ((\<lambda>x. ereal (f x)) \<longlongrightarrow> ereal x) F" using isCont_tendsto_compose[of x ereal f F] continuous_on_ereal[of UNIV "\<lambda>x. x"] by (simp add: continuous_on_eq_continuous_at)lemma tendsto_uminus_ereal[tendsto_intros, simp, intro]: "(f \<longlongrightarrow> x) F \<Longrightarrow> ((\<lambda>x. - f x::ereal) \<longlongrightarrow> - x) F" apply (rule tendsto_compose[where g=uminus]) apply (auto intro!: order_tendstoI simp: eventually_at_topological) apply (rule_tac x="{..< -a}" in exI) apply (auto split: ereal.split simp: ereal_less_uminus_reorder) [] apply (rule_tac x="{- a <..}" in exI) apply (auto split: ereal.split simp: ereal_uminus_reorder) [] donelemma at_infty_ereal_eq_at_top: "at \<infinity> = filtermap ereal at_top" unfolding filter_eq_iff eventually_at_filter eventually_at_top_linorder eventually_filtermap top_ereal_def[symmetric] apply (subst eventually_nhds_top[of 0]) apply (auto simp: top_ereal_def less_le ereal_all_split ereal_ex_split) apply (metis PInfty_neq_ereal(2) ereal_less_eq(3) ereal_top le_cases order_trans) donelemma ereal_Lim_uminus: "(f \<longlongrightarrow> f0) net \<longleftrightarrow> ((\<lambda>x. - f x::ereal) \<longlongrightarrow> - f0) net" using tendsto_uminus_ereal[of f f0 net] tendsto_uminus_ereal[of "\<lambda>x. - f x" "- f0" net] by autolemma ereal_divide_less_iff: "0 < (c::ereal) \<Longrightarrow> c < \<infinity> \<Longrightarrow> a / c < b \<longleftrightarrow> a < b * c" by (cases a b c rule: ereal3_cases) (auto simp: field_simps)lemma ereal_less_divide_iff: "0 < (c::ereal) \<Longrightarrow> c < \<infinity> \<Longrightarrow> a < b / c \<longleftrightarrow> a * c < b" by (cases a b c rule: ereal3_cases) (auto simp: field_simps)lemma tendsto_cmult_ereal[tendsto_intros, simp, intro]: assumes c: "\<bar>c\<bar> \<noteq> \<infinity>" and f: "(f \<longlongrightarrow> x) F" shows "((\<lambda>x. c * f x::ereal) \<longlongrightarrow> c * x) F"proof - { fix c :: ereal assume "0 < c" "c < \<infinity>" then have "((\<lambda>x. c * f x::ereal) \<longlongrightarrow> c * x) F" apply (intro tendsto_compose[OF _ f]) apply (auto intro!: order_tendstoI simp: eventually_at_topological) apply (rule_tac x="{a/c <..}" in exI) apply (auto split: ereal.split simp: ereal_divide_less_iff mult.commute) [] apply (rule_tac x="{..< a/c}" in exI) apply (auto split: ereal.split simp: ereal_less_divide_iff mult.commute) [] done } note * = this have "((0 < c \<and> c < \<infinity>) \<or> (-\<infinity> < c \<and> c < 0) \<or> c = 0)" using c by (cases c) auto then show ?thesis proof (elim disjE conjE) assume "- \<infinity> < c" "c < 0" then have "0 < - c" "- c < \<infinity>" by (auto simp: ereal_uminus_reorder ereal_less_uminus_reorder[of 0]) then have "((\<lambda>x. (- c) * f x) \<longlongrightarrow> (- c) * x) F" by (rule *) from tendsto_uminus_ereal[OF this] show ?thesis by simp qed (auto intro!: *)qedlemma tendsto_cmult_ereal_not_0[tendsto_intros, simp, intro]: assumes "x \<noteq> 0" and f: "(f \<longlongrightarrow> x) F" shows "((\<lambda>x. c * f x::ereal) \<longlongrightarrow> c * x) F"proof cases assume "\<bar>c\<bar> = \<infinity>" show ?thesis proof (rule filterlim_cong[THEN iffD1, OF refl refl _ tendsto_const]) have "0 < x \<or> x < 0" using \<open>x \<noteq> 0\<close> by (auto simp add: neq_iff) then show "eventually (\<lambda>x'. c * x = c * f x') F" proof assume "0 < x" from order_tendstoD(1)[OF f this] show ?thesis by eventually_elim (insert \<open>0<x\<close> \<open>\<bar>c\<bar> = \<infinity>\<close>, auto) next assume "x < 0" from order_tendstoD(2)[OF f this] show ?thesis by eventually_elim (insert \<open>x<0\<close> \<open>\<bar>c\<bar> = \<infinity>\<close>, auto) qed qedqed (rule tendsto_cmult_ereal[OF _ f])lemma tendsto_cadd_ereal[tendsto_intros, simp, intro]: assumes c: "y \<noteq> - \<infinity>" "x \<noteq> - \<infinity>" and f: "(f \<longlongrightarrow> x) F" shows "((\<lambda>x. f x + y::ereal) \<longlongrightarrow> x + y) F" apply (intro tendsto_compose[OF _ f]) apply (auto intro!: order_tendstoI simp: eventually_at_topological) apply (rule_tac x="{a - y <..}" in exI) apply (auto split: ereal.split simp: ereal_minus_less_iff c) [] apply (rule_tac x="{..< a - y}" in exI) apply (auto split: ereal.split simp: ereal_less_minus_iff c) [] donelemma tendsto_add_left_ereal[tendsto_intros, simp, intro]: assumes c: "\<bar>y\<bar> \<noteq> \<infinity>" and f: "(f \<longlongrightarrow> x) F" shows "((\<lambda>x. f x + y::ereal) \<longlongrightarrow> x + y) F" apply (intro tendsto_compose[OF _ f]) apply (auto intro!: order_tendstoI simp: eventually_at_topological) apply (rule_tac x="{a - y <..}" in exI) apply (insert c, auto split: ereal.split simp: ereal_minus_less_iff) [] apply (rule_tac x="{..< a - y}" in exI) apply (auto split: ereal.split simp: ereal_less_minus_iff c) [] donelemma continuous_at_ereal[continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. ereal (f x))" unfolding continuous_def by autolemma ereal_Sup: assumes *: "\<bar>SUP a\<in>A. ereal a\<bar> \<noteq> \<infinity>" shows "ereal (Sup A) = (SUP a\<in>A. ereal a)"proof (rule continuous_at_Sup_mono) obtain r where r: "ereal r = (SUP a\<in>A. ereal a)" "A \<noteq> {}" using * by (force simp: bot_ereal_def) then show "bdd_above A" "A \<noteq> {}" by (auto intro!: SUP_upper bdd_aboveI[of _ r] simp flip: ereal_less_eq)qed (auto simp: mono_def continuous_at_imp_continuous_at_within continuous_at_ereal)lemma ereal_SUP: "\<bar>SUP a\<in>A. ereal (f a)\<bar> \<noteq> \<infinity> \<Longrightarrow> ereal (SUP a\<in>A. f a) = (SUP a\<in>A. ereal (f a))" by (simp add: ereal_Sup image_comp)lemma ereal_Inf: assumes *: "\<bar>INF a\<in>A. ereal a\<bar> \<noteq> \<infinity>" shows "ereal (Inf A) = (INF a\<in>A. ereal a)"proof (rule continuous_at_Inf_mono) obtain r where r: "ereal r = (INF a\<in>A. ereal a)" "A \<noteq> {}" using * by (force simp: top_ereal_def) then show "bdd_below A" "A \<noteq> {}" by (auto intro!: INF_lower bdd_belowI[of _ r] simp flip: ereal_less_eq)qed (auto simp: mono_def continuous_at_imp_continuous_at_within continuous_at_ereal)lemma ereal_Inf': assumes *: "bdd_below A" "A \<noteq> {}" shows "ereal (Inf A) = (INF a\<in>A. ereal a)"proof (rule ereal_Inf) from * obtain l u where "x \<in> A \<Longrightarrow> l \<le> x" "u \<in> A" for x by (auto simp: bdd_below_def) then have "l \<le> (INF x\<in>A. ereal x)" "(INF x\<in>A. ereal x) \<le> u" by (auto intro!: INF_greatest INF_lower) then show "\<bar>INF a\<in>A. ereal a\<bar> \<noteq> \<infinity>" by autoqedlemma ereal_INF: "\<bar>INF a\<in>A. ereal (f a)\<bar> \<noteq> \<infinity> \<Longrightarrow> ereal (INF a\<in>A. f a) = (INF a\<in>A. ereal (f a))" by (simp add: ereal_Inf image_comp)lemma ereal_Sup_uminus_image_eq: "Sup (uminus ` S::ereal set) = - Inf S" by (auto intro!: SUP_eqI simp: Ball_def[symmetric] ereal_uminus_le_reorder le_Inf_iff intro!: complete_lattice_class.Inf_lower2)lemma ereal_SUP_uminus_eq: fixes f :: "'a \<Rightarrow> ereal" shows "(SUP x\<in>S. uminus (f x)) = - (INF x\<in>S. f x)" using ereal_Sup_uminus_image_eq [of "f ` S"] by (simp add: image_comp)lemma ereal_inj_on_uminus[intro, simp]: "inj_on uminus (A :: ereal set)" by (auto intro!: inj_onI)lemma ereal_Inf_uminus_image_eq: "Inf (uminus ` S::ereal set) = - Sup S" using ereal_Sup_uminus_image_eq[of "uminus ` S"] by simplemma ereal_INF_uminus_eq: fixes f :: "'a \<Rightarrow> ereal" shows "(INF x\<in>S. - f x) = - (SUP x\<in>S. f x)" using ereal_Inf_uminus_image_eq [of "f ` S"] by (simp add: image_comp)lemma ereal_SUP_uminus: fixes f :: "'a \<Rightarrow> ereal" shows "(SUP i \<in> R. - f i) = - (INF i \<in> R. f i)" using ereal_Sup_uminus_image_eq[of "f`R"] by (simp add: image_image)lemma ereal_SUP_not_infty: fixes f :: "_ \<Rightarrow> ereal" shows "A \<noteq> {} \<Longrightarrow> l \<noteq> -\<infinity> \<Longrightarrow> u \<noteq> \<infinity> \<Longrightarrow> \<forall>a\<in>A. l \<le> f a \<and> f a \<le> u \<Longrightarrow> \<bar>Sup (f ` A)\<bar> \<noteq> \<infinity>" using SUP_upper2[of _ A l f] SUP_least[of A f u] by (cases "Sup (f ` A)") autolemma ereal_INF_not_infty: fixes f :: "_ \<Rightarrow> ereal" shows "A \<noteq> {} \<Longrightarrow> l \<noteq> -\<infinity> \<Longrightarrow> u \<noteq> \<infinity> \<Longrightarrow> \<forall>a\<in>A. l \<le> f a \<and> f a \<le> u \<Longrightarrow> \<bar>Inf (f ` A)\<bar> \<noteq> \<infinity>" using INF_lower2[of _ A f u] INF_greatest[of A l f] by (cases "Inf (f ` A)") autolemma ereal_image_uminus_shift: fixes X Y :: "ereal set" shows "uminus ` X = Y \<longleftrightarrow> X = uminus ` Y"proof assume "uminus ` X = Y" then have "uminus ` uminus ` X = uminus ` Y" by (simp add: inj_image_eq_iff) then show "X = uminus ` Y" by (simp add: image_image)qed (simp add: image_image)lemma Sup_eq_MInfty: fixes S :: "ereal set" shows "Sup S = -\<infinity> \<longleftrightarrow> S = {} \<or> S = {-\<infinity>}" unfolding bot_ereal_def[symmetric] by autolemma Inf_eq_PInfty: fixes S :: "ereal set" shows "Inf S = \<infinity> \<longleftrightarrow> S = {} \<or> S = {\<infinity>}" using Sup_eq_MInfty[of "uminus`S"] unfolding ereal_Sup_uminus_image_eq ereal_image_uminus_shift by simplemma Inf_eq_MInfty: fixes S :: "ereal set" shows "-\<infinity> \<in> S \<Longrightarrow> Inf S = -\<infinity>" unfolding bot_ereal_def[symmetric] by autolemma Sup_eq_PInfty: fixes S :: "ereal set" shows "\<infinity> \<in> S \<Longrightarrow> Sup S = \<infinity>" unfolding top_ereal_def[symmetric] by autolemma not_MInfty_nonneg[simp]: "0 \<le> (x::ereal) \<Longrightarrow> x \<noteq> - \<infinity>" by autolemma Sup_ereal_close: fixes e :: ereal assumes "0 < e" and S: "\<bar>Sup S\<bar> \<noteq> \<infinity>" "S \<noteq> {}" shows "\<exists>x\<in>S. Sup S - e < x" using assms by (cases e) (auto intro!: less_Sup_iff[THEN iffD1])lemma Inf_ereal_close: fixes e :: ereal assumes "\<bar>Inf X\<bar> \<noteq> \<infinity>" and "0 < e" shows "\<exists>x\<in>X. x < Inf X + e"proof (rule Inf_less_iff[THEN iffD1]) show "Inf X < Inf X + e" using assms by (cases e) autoqedlemma SUP_PInfty: "(\<And>n::nat. \<exists>i\<in>A. ereal (real n) \<le> f i) \<Longrightarrow> (SUP i\<in>A. f i :: ereal) = \<infinity>" unfolding top_ereal_def[symmetric] SUP_eq_top_iff by (metis MInfty_neq_PInfty(2) PInfty_neq_ereal(2) less_PInf_Ex_of_nat less_ereal.elims(2) less_le_trans)lemma SUP_nat_Infty: "(SUP i. ereal (real i)) = \<infinity>" by (rule SUP_PInfty) autolemma SUP_ereal_add_left: assumes "I \<noteq> {}" "c \<noteq> -\<infinity>" shows "(SUP i\<in>I. f i + c :: ereal) = (SUP i\<in>I. f i) + c"proof (cases "(SUP i\<in>I. f i) = - \<infinity>") case True then have "\<And>i. i \<in> I \<Longrightarrow> f i = -\<infinity>" unfolding Sup_eq_MInfty by auto with True show ?thesis by (cases c) (auto simp: \<open>I \<noteq> {}\<close>)next case False then show ?thesis by (subst continuous_at_Sup_mono[where f="\<lambda>x. x + c"]) (auto simp: continuous_at_imp_continuous_at_within continuous_at mono_def add_mono \<open>I \<noteq> {}\<close> \<open>c \<noteq> -\<infinity>\<close> image_comp)qedlemma SUP_ereal_add_right: fixes c :: ereal shows "I \<noteq> {} \<Longrightarrow> c \<noteq> -\<infinity> \<Longrightarrow> (SUP i\<in>I. c + f i) = c + (SUP i\<in>I. f i)" using SUP_ereal_add_left[of I c f] by (simp add: add.commute)lemma SUP_ereal_minus_right: assumes "I \<noteq> {}" "c \<noteq> -\<infinity>" shows "(SUP i\<in>I. c - f i :: ereal) = c - (INF i\<in>I. f i)" using SUP_ereal_add_right[OF assms, of "\<lambda>i. - f i"] by (simp add: ereal_SUP_uminus minus_ereal_def)lemma SUP_ereal_minus_left: assumes "I \<noteq> {}" "c \<noteq> \<infinity>" shows "(SUP i\<in>I. f i - c:: ereal) = (SUP i\<in>I. f i) - c" using SUP_ereal_add_left[OF \<open>I \<noteq> {}\<close>, of "-c" f] by (simp add: \<open>c \<noteq> \<infinity>\<close> minus_ereal_def)lemma INF_ereal_minus_right: assumes "I \<noteq> {}" and "\<bar>c\<bar> \<noteq> \<infinity>" shows "(INF i\<in>I. c - f i) = c - (SUP i\<in>I. f i::ereal)"proof - { fix b have "(-c) + b = - (c - b)" using \<open>\<bar>c\<bar> \<noteq> \<infinity>\<close> by (cases c b rule: ereal2_cases) auto } note * = this show ?thesis using SUP_ereal_add_right[OF \<open>I \<noteq> {}\<close>, of "-c" f] \<open>\<bar>c\<bar> \<noteq> \<infinity>\<close> by (auto simp add: * ereal_SUP_uminus_eq)qedlemma SUP_ereal_le_addI: fixes f :: "'i \<Rightarrow> ereal" assumes "\<And>i. f i + y \<le> z" and "y \<noteq> -\<infinity>" shows "Sup (f ` UNIV) + y \<le> z" unfolding SUP_ereal_add_left[OF UNIV_not_empty \<open>y \<noteq> -\<infinity>\<close>, symmetric] by (rule SUP_least assms)+lemma SUP_combine: fixes f :: "'a::semilattice_sup \<Rightarrow> 'a::semilattice_sup \<Rightarrow> 'b::complete_lattice" assumes mono: "\<And>a b c d. a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> f a c \<le> f b d" shows "(SUP i\<in>UNIV. SUP j\<in>UNIV. f i j) = (SUP i. f i i)"proof (rule antisym) show "(SUP i j. f i j) \<le> (SUP i. f i i)" by (rule SUP_least SUP_upper2[where i="sup i j" for i j] UNIV_I mono sup_ge1 sup_ge2)+ show "(SUP i. f i i) \<le> (SUP i j. f i j)" by (rule SUP_least SUP_upper2 UNIV_I mono order_refl)+qedlemma SUP_ereal_add: fixes f g :: "nat \<Rightarrow> ereal" assumes inc: "incseq f" "incseq g" and pos: "\<And>i. f i \<noteq> -\<infinity>" "\<And>i. g i \<noteq> -\<infinity>" shows "(SUP i. f i + g i) = Sup (f ` UNIV) + Sup (g ` UNIV)" apply (subst SUP_ereal_add_left[symmetric, OF UNIV_not_empty]) apply (metis SUP_upper UNIV_I assms(4) ereal_infty_less_eq(2)) apply (subst (2) add.commute) apply (subst SUP_ereal_add_left[symmetric, OF UNIV_not_empty assms(3)]) apply (subst (2) add.commute) apply (rule SUP_combine[symmetric] add_mono inc[THEN monoD] | assumption)+ donelemma INF_eq_minf: "(INF i\<in>I. f i::ereal) \<noteq> -\<infinity> \<longleftrightarrow> (\<exists>b>-\<infinity>. \<forall>i\<in>I. b \<le> f i)" unfolding bot_ereal_def[symmetric] INF_eq_bot_iff by (auto simp: not_less)lemma INF_ereal_add_left: assumes "I \<noteq> {}" "c \<noteq> -\<infinity>" "\<And>x. x \<in> I \<Longrightarrow> 0 \<le> f x" shows "(INF i\<in>I. f i + c :: ereal) = (INF i\<in>I. f i) + c"proof - have "(INF i\<in>I. f i) \<noteq> -\<infinity>" unfolding INF_eq_minf using assms by (intro exI[of _ 0]) auto then show ?thesis by (subst continuous_at_Inf_mono[where f="\<lambda>x. x + c"]) (auto simp: mono_def add_mono \<open>I \<noteq> {}\<close> \<open>c \<noteq> -\<infinity>\<close> continuous_at_imp_continuous_at_within continuous_at image_comp)qedlemma INF_ereal_add_right: assumes "I \<noteq> {}" "c \<noteq> -\<infinity>" "\<And>x. x \<in> I \<Longrightarrow> 0 \<le> f x" shows "(INF i\<in>I. c + f i :: ereal) = c + (INF i\<in>I. f i)" using INF_ereal_add_left[OF assms] by (simp add: ac_simps)lemma INF_ereal_add_directed: fixes f g :: "'a \<Rightarrow> ereal" assumes nonneg: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> g i" assumes directed: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> \<exists>k\<in>I. f i + g j \<ge> f k + g k" shows "(INF i\<in>I. f i + g i) = (INF i\<in>I. f i) + (INF i\<in>I. g i)"proof cases assume "I = {}" then show ?thesis by (simp add: top_ereal_def)next assume "I \<noteq> {}" show ?thesis proof (rule antisym) show "(INF i\<in>I. f i) + (INF i\<in>I. g i) \<le> (INF i\<in>I. f i + g i)" by (rule INF_greatest; intro add_mono INF_lower) next have "(INF i\<in>I. f i + g i) \<le> (INF i\<in>I. (INF j\<in>I. f i + g j))" using directed by (intro INF_greatest) (blast intro: INF_lower2) also have "\<dots> = (INF i\<in>I. f i + (INF i\<in>I. g i))" using nonneg \<open>I \<noteq> {}\<close> by (auto simp: INF_ereal_add_right) also have "\<dots> = (INF i\<in>I. f i) + (INF i\<in>I. g i)" using nonneg by (intro INF_ereal_add_left \<open>I \<noteq> {}\<close>) (auto simp: INF_eq_minf intro!: exI[of _ 0]) finally show "(INF i\<in>I. f i + g i) \<le> (INF i\<in>I. f i) + (INF i\<in>I. g i)" . qedqedlemma INF_ereal_add: fixes f :: "nat \<Rightarrow> ereal" assumes "decseq f" "decseq g" and fin: "\<And>i. f i \<noteq> \<infinity>" "\<And>i. g i \<noteq> \<infinity>" shows "(INF i. f i + g i) = Inf (f ` UNIV) + Inf (g ` UNIV)"proof - have INF_less: "(INF i. f i) < \<infinity>" "(INF i. g i) < \<infinity>" using assms unfolding INF_less_iff by auto { fix a b :: ereal assume "a \<noteq> \<infinity>" "b \<noteq> \<infinity>" then have "- ((- a) + (- b)) = a + b" by (cases a b rule: ereal2_cases) auto } note * = this have "(INF i. f i + g i) = (INF i. - ((- f i) + (- g i)))" by (simp add: fin *) also have "\<dots> = Inf (f ` UNIV) + Inf (g ` UNIV)" unfolding ereal_INF_uminus_eq using assms INF_less by (subst SUP_ereal_add) (auto simp: ereal_SUP_uminus fin *) finally show ?thesis .qedlemma SUP_ereal_add_pos: fixes f g :: "nat \<Rightarrow> ereal" assumes inc: "incseq f" "incseq g" and pos: "\<And>i. 0 \<le> f i" "\<And>i. 0 \<le> g i" shows "(SUP i. f i + g i) = Sup (f ` UNIV) + Sup (g ` UNIV)"proof (intro SUP_ereal_add inc) fix i show "f i \<noteq> -\<infinity>" "g i \<noteq> -\<infinity>" using pos[of i] by autoqedlemma SUP_ereal_sum: fixes f g :: "'a \<Rightarrow> nat \<Rightarrow> ereal" assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)" and pos: "\<And>n i. n \<in> A \<Longrightarrow> 0 \<le> f n i" shows "(SUP i. \<Sum>n\<in>A. f n i) = (\<Sum>n\<in>A. Sup ((f n) ` UNIV))"proof (cases "finite A") case True then show ?thesis using assms by induct (auto simp: incseq_sumI2 sum_nonneg SUP_ereal_add_pos)next case False then show ?thesis by simpqedlemma SUP_ereal_mult_left: fixes f :: "'a \<Rightarrow> ereal" assumes "I \<noteq> {}" assumes f: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" and c: "0 \<le> c" shows "(SUP i\<in>I. c * f i) = c * (SUP i\<in>I. f i)"proof (cases "(SUP i \<in> I. f i) = 0") case True then have "\<And>i. i \<in> I \<Longrightarrow> f i = 0" by (metis SUP_upper f antisym) with True show ?thesis by simpnext case False then show ?thesis by (subst continuous_at_Sup_mono[where f="\<lambda>x. c * x"]) (auto simp: mono_def continuous_at continuous_at_imp_continuous_at_within \<open>I \<noteq> {}\<close> image_comp intro!: ereal_mult_left_mono c)qedlemma countable_approach: fixes x :: ereal assumes "x \<noteq> -\<infinity>" shows "\<exists>f. incseq f \<and> (\<forall>i::nat. f i < x) \<and> (f \<longlonglongrightarrow> x)"proof (cases x) case (real r) moreover have "(\<lambda>n. r - inverse (real (Suc n))) \<longlonglongrightarrow> r - 0" by (intro tendsto_intros LIMSEQ_inverse_real_of_nat) ultimately show ?thesis by (intro exI[of _ "\<lambda>n. x - inverse (Suc n)"]) (auto simp: incseq_def)next case PInf with LIMSEQ_SUP[of "\<lambda>n::nat. ereal (real n)"] show ?thesis by (intro exI[of _ "\<lambda>n. ereal (real n)"]) (auto simp: incseq_def SUP_nat_Infty)qed (simp add: assms)lemma Sup_countable_SUP: assumes "A \<noteq> {}" shows "\<exists>f::nat \<Rightarrow> ereal. incseq f \<and> range f \<subseteq> A \<and> Sup A = (SUP i. f i)"proof cases assume "Sup A = -\<infinity>" with \<open>A \<noteq> {}\<close> have "A = {-\<infinity>}" by (auto simp: Sup_eq_MInfty) then show ?thesis by (auto intro!: exI[of _ "\<lambda>_. -\<infinity>"] simp: bot_ereal_def)next assume "Sup A \<noteq> -\<infinity>" then obtain l where "incseq l" and l: "l i < Sup A" and l_Sup: "l \<longlonglongrightarrow> Sup A" for i :: nat by (auto dest: countable_approach) have "\<exists>f. \<forall>n. (f n \<in> A \<and> l n \<le> f n) \<and> (f n \<le> f (Suc n))" proof (rule dependent_nat_choice) show "\<exists>x. x \<in> A \<and> l 0 \<le> x" using l[of 0] by (auto simp: less_Sup_iff) next fix x n assume "x \<in> A \<and> l n \<le> x" moreover from l[of "Suc n"] obtain y where "y \<in> A" "l (Suc n) < y" by (auto simp: less_Sup_iff) ultimately show "\<exists>y. (y \<in> A \<and> l (Suc n) \<le> y) \<and> x \<le> y" by (auto intro!: exI[of _ "max x y"] split: split_max) qed then guess f .. note f = this then have "range f \<subseteq> A" "incseq f" by (auto simp: incseq_Suc_iff) moreover have "(SUP i. f i) = Sup A" proof (rule tendsto_unique) show "f \<longlonglongrightarrow> (SUP i. f i)" by (rule LIMSEQ_SUP \<open>incseq f\<close>)+ show "f \<longlonglongrightarrow> Sup A" using l f by (intro tendsto_sandwich[OF _ _ l_Sup tendsto_const]) (auto simp: Sup_upper) qed simp ultimately show ?thesis by autoqedlemma Inf_countable_INF: assumes "A \<noteq> {}" shows "\<exists>f::nat \<Rightarrow> ereal. decseq f \<and> range f \<subseteq> A \<and> Inf A = (INF i. f i)"proof - obtain f where "incseq f" "range f \<subseteq> uminus`A" "Sup (uminus`A) = (SUP i. f i)" using Sup_countable_SUP[of "uminus ` A"] \<open>A \<noteq> {}\<close> by auto then show ?thesis by (intro exI[of _ "\<lambda>x. - f x"]) (auto simp: ereal_Sup_uminus_image_eq ereal_INF_uminus_eq eq_commute[of "- _"])qedlemma SUP_countable_SUP: "A \<noteq> {} \<Longrightarrow> \<exists>f::nat \<Rightarrow> ereal. range f \<subseteq> g`A \<and> Sup (g ` A) = Sup (f ` UNIV)" using Sup_countable_SUP [of "g`A"] by autosubsection "Relation to \<^typ>\<open>enat\<close>"definition "ereal_of_enat n = (case n of enat n \<Rightarrow> ereal (real n) | \<infinity> \<Rightarrow> \<infinity>)"declare [[coercion "ereal_of_enat :: enat \<Rightarrow> ereal"]]declare [[coercion "(\<lambda>n. ereal (real n)) :: nat \<Rightarrow> ereal"]]lemma ereal_of_enat_simps[simp]: "ereal_of_enat (enat n) = ereal n" "ereal_of_enat \<infinity> = \<infinity>" by (simp_all add: ereal_of_enat_def)lemma ereal_of_enat_le_iff[simp]: "ereal_of_enat m \<le> ereal_of_enat n \<longleftrightarrow> m \<le> n" by (cases m n rule: enat2_cases) autolemma ereal_of_enat_less_iff[simp]: "ereal_of_enat m < ereal_of_enat n \<longleftrightarrow> m < n" by (cases m n rule: enat2_cases) autolemma numeral_le_ereal_of_enat_iff[simp]: "numeral m \<le> ereal_of_enat n \<longleftrightarrow> numeral m \<le> n"by (cases n) (auto)lemma numeral_less_ereal_of_enat_iff[simp]: "numeral m < ereal_of_enat n \<longleftrightarrow> numeral m < n" by (cases n) autolemma ereal_of_enat_ge_zero_cancel_iff[simp]: "0 \<le> ereal_of_enat n \<longleftrightarrow> 0 \<le> n" by (cases n) (auto simp flip: enat_0)lemma ereal_of_enat_gt_zero_cancel_iff[simp]: "0 < ereal_of_enat n \<longleftrightarrow> 0 < n" by (cases n) (auto simp flip: enat_0)lemma ereal_of_enat_zero[simp]: "ereal_of_enat 0 = 0" by (auto simp flip: enat_0)lemma ereal_of_enat_inf[simp]: "ereal_of_enat n = \<infinity> \<longleftrightarrow> n = \<infinity>" by (cases n) autolemma ereal_of_enat_add: "ereal_of_enat (m + n) = ereal_of_enat m + ereal_of_enat n" by (cases m n rule: enat2_cases) autolemma ereal_of_enat_sub: assumes "n \<le> m" shows "ereal_of_enat (m - n) = ereal_of_enat m - ereal_of_enat n " using assms by (cases m n rule: enat2_cases) autolemma ereal_of_enat_mult: "ereal_of_enat (m * n) = ereal_of_enat m * ereal_of_enat n" by (cases m n rule: enat2_cases) autolemmas ereal_of_enat_pushin = ereal_of_enat_add ereal_of_enat_sub ereal_of_enat_multlemmas ereal_of_enat_pushout = ereal_of_enat_pushin[symmetric]lemma ereal_of_enat_nonneg: "ereal_of_enat n \<ge> 0"by(cases n) simp_alllemma ereal_of_enat_Sup: assumes "A \<noteq> {}" shows "ereal_of_enat (Sup A) = (SUP a \<in> A. ereal_of_enat a)"proof (intro antisym mono_Sup) show "ereal_of_enat (Sup A) \<le> (SUP a \<in> A. ereal_of_enat a)" proof cases assume "finite A" with \<open>A \<noteq> {}\<close> obtain a where "a \<in> A" "ereal_of_enat (Sup A) = ereal_of_enat a" using Max_in[of A] by (auto simp: Sup_enat_def simp del: Max_in) then show ?thesis by (auto intro: SUP_upper) next assume "\<not> finite A" have [simp]: "(SUP a \<in> A. ereal_of_enat a) = top" unfolding SUP_eq_top_iff proof safe fix x :: ereal assume "x < top" then obtain n :: nat where "x < n" using less_PInf_Ex_of_nat top_ereal_def by auto obtain a where "a \<in> A - enat ` {.. n}" by (metis \<open>\<not> finite A\<close> all_not_in_conv finite_Diff2 finite_atMost finite_imageI finite.emptyI) then have "a \<in> A" "ereal n \<le> ereal_of_enat a" by (auto simp: image_iff Ball_def) (metis enat_iless enat_ord_simps(1) ereal_of_enat_less_iff ereal_of_enat_simps(1) less_le not_less) with \<open>x < n\<close> show "\<exists>i\<in>A. x < ereal_of_enat i" by (auto intro!: bexI[of _ a]) qed show ?thesis by simp qedqed (simp add: mono_def)lemma ereal_of_enat_SUP: "A \<noteq> {} \<Longrightarrow> ereal_of_enat (SUP a\<in>A. f a) = (SUP a \<in> A. ereal_of_enat (f a))" by (simp add: ereal_of_enat_Sup image_comp)subsection "Limits on \<^typ>\<open>ereal\<close>"lemma open_PInfty: "open A \<Longrightarrow> \<infinity> \<in> A \<Longrightarrow> (\<exists>x. {ereal x<..} \<subseteq> A)" unfolding open_ereal_generatedproof (induct rule: generate_topology.induct) case (Int A B) then obtain x z where "\<infinity> \<in> A \<Longrightarrow> {ereal x <..} \<subseteq> A" "\<infinity> \<in> B \<Longrightarrow> {ereal z <..} \<subseteq> B" by auto with Int show ?case by (intro exI[of _ "max x z"]) fastforcenext case (Basis S) { fix x have "x \<noteq> \<infinity> \<Longrightarrow> \<exists>t. x \<le> ereal t" by (cases x) auto } moreover note Basis ultimately show ?case by (auto split: ereal.split)qed (fastforce simp add: vimage_Union)+lemma open_MInfty: "open A \<Longrightarrow> -\<infinity> \<in> A \<Longrightarrow> (\<exists>x. {..<ereal x} \<subseteq> A)" unfolding open_ereal_generatedproof (induct rule: generate_topology.induct) case (Int A B) then obtain x z where "-\<infinity> \<in> A \<Longrightarrow> {..< ereal x} \<subseteq> A" "-\<infinity> \<in> B \<Longrightarrow> {..< ereal z} \<subseteq> B" by auto with Int show ?case by (intro exI[of _ "min x z"]) fastforcenext case (Basis S) { fix x have "x \<noteq> - \<infinity> \<Longrightarrow> \<exists>t. ereal t \<le> x" by (cases x) auto } moreover note Basis ultimately show ?case by (auto split: ereal.split)qed (fastforce simp add: vimage_Union)+lemma open_ereal_vimage: "open S \<Longrightarrow> open (ereal -` S)" by (intro open_vimage continuous_intros)lemma open_ereal: "open S \<Longrightarrow> open (ereal ` S)" unfolding open_generated_order[where 'a=real]proof (induct rule: generate_topology.induct) case (Basis S) moreover { fix x have "ereal ` {..< x} = { -\<infinity> <..< ereal x }" apply auto apply (case_tac xa) apply auto done } moreover { fix x have "ereal ` {x <..} = { ereal x <..< \<infinity> }" apply auto apply (case_tac xa) apply auto done } ultimately show ?case by autoqed (auto simp add: image_Union image_Int)lemma open_image_real_of_ereal: fixes X::"ereal set" assumes "open X" assumes "\<infinity> \<notin> X" assumes "-\<infinity> \<notin> X" shows "open (real_of_ereal ` X)"proof - have "real_of_ereal ` X = ereal -` X" apply safe subgoal by (metis assms(2) assms(3) real_of_ereal.elims vimageI) subgoal using image_iff by fastforce done thus ?thesis by (auto intro!: open_ereal_vimage assms)qedlemma eventually_finite: fixes x :: ereal assumes "\<bar>x\<bar> \<noteq> \<infinity>" "(f \<longlongrightarrow> x) F" shows "eventually (\<lambda>x. \<bar>f x\<bar> \<noteq> \<infinity>) F"proof - have "(f \<longlongrightarrow> ereal (real_of_ereal x)) F" using assms by (cases x) auto then have "eventually (\<lambda>x. f x \<in> ereal ` UNIV) F" by (rule topological_tendstoD) (auto intro: open_ereal) also have "(\<lambda>x. f x \<in> ereal ` UNIV) = (\<lambda>x. \<bar>f x\<bar> \<noteq> \<infinity>)" by auto finally show ?thesis .qedlemma open_ereal_def: "open A \<longleftrightarrow> open (ereal -` A) \<and> (\<infinity> \<in> A \<longrightarrow> (\<exists>x. {ereal x <..} \<subseteq> A)) \<and> (-\<infinity> \<in> A \<longrightarrow> (\<exists>x. {..<ereal x} \<subseteq> A))" (is "open A \<longleftrightarrow> ?rhs")proof assume "open A" then show ?rhs using open_PInfty open_MInfty open_ereal_vimage by autonext assume "?rhs" then obtain x y where A: "open (ereal -` A)" "\<infinity> \<in> A \<Longrightarrow> {ereal x<..} \<subseteq> A" "-\<infinity> \<in> A \<Longrightarrow> {..< ereal y} \<subseteq> A" by auto have *: "A = ereal ` (ereal -` A) \<union> (if \<infinity> \<in> A then {ereal x<..} else {}) \<union> (if -\<infinity> \<in> A then {..< ereal y} else {})" using A(2,3) by auto from open_ereal[OF A(1)] show "open A" by (subst *) (auto simp: open_Un)qedlemma open_PInfty2: assumes "open A" and "\<infinity> \<in> A" obtains x where "{ereal x<..} \<subseteq> A" using open_PInfty[OF assms] by autolemma open_MInfty2: assumes "open A" and "-\<infinity> \<in> A" obtains x where "{..<ereal x} \<subseteq> A" using open_MInfty[OF assms] by autolemma ereal_openE: assumes "open A" obtains x y where "open (ereal -` A)" and "\<infinity> \<in> A \<Longrightarrow> {ereal x<..} \<subseteq> A" and "-\<infinity> \<in> A \<Longrightarrow> {..<ereal y} \<subseteq> A" using assms open_ereal_def by autolemmas open_ereal_lessThan = open_lessThan[where 'a=ereal]lemmas open_ereal_greaterThan = open_greaterThan[where 'a=ereal]lemmas ereal_open_greaterThanLessThan = open_greaterThanLessThan[where 'a=ereal]lemmas closed_ereal_atLeast = closed_atLeast[where 'a=ereal]lemmas closed_ereal_atMost = closed_atMost[where 'a=ereal]lemmas closed_ereal_atLeastAtMost = closed_atLeastAtMost[where 'a=ereal]lemmas closed_ereal_singleton = closed_singleton[where 'a=ereal]lemma ereal_open_cont_interval: fixes S :: "ereal set" assumes "open S" and "x \<in> S" and "\<bar>x\<bar> \<noteq> \<infinity>" obtains e where "e > 0" and "{x-e <..< x+e} \<subseteq> S"proof - from \<open>open S\<close> have "open (ereal -` S)" by (rule ereal_openE) then obtain e where "e > 0" and e: "dist y (real_of_ereal x) < e \<Longrightarrow> ereal y \<in> S" for y using assms unfolding open_dist by force show thesis proof (intro that subsetI) show "0 < ereal e" using \<open>0 < e\<close> by auto fix y assume "y \<in> {x - ereal e<..<x + ereal e}" with assms obtain t where "y = ereal t" "dist t (real_of_ereal x) < e" by (cases y) (auto simp: dist_real_def) then show "y \<in> S" using e[of t] by auto qedqedlemma ereal_open_cont_interval2: fixes S :: "ereal set" assumes "open S" and "x \<in> S" and x: "\<bar>x\<bar> \<noteq> \<infinity>" obtains a b where "a < x" and "x < b" and "{a <..< b} \<subseteq> S"proof - obtain e where "0 < e" "{x - e<..<x + e} \<subseteq> S" using assms by (rule ereal_open_cont_interval) with that[of "x - e" "x + e"] ereal_between[OF x, of e] show thesis by autoqedsubsubsection \<open>Convergent sequences\<close>lemma lim_real_of_ereal[simp]: assumes lim: "(f \<longlongrightarrow> ereal x) net" shows "((\<lambda>x. real_of_ereal (f x)) \<longlongrightarrow> x) net"proof (intro topological_tendstoI) fix S assume "open S" and "x \<in> S" then have S: "open S" "ereal x \<in> ereal ` S" by (simp_all add: inj_image_mem_iff) show "eventually (\<lambda>x. real_of_ereal (f x) \<in> S) net" by (auto intro: eventually_mono [OF lim[THEN topological_tendstoD, OF open_ereal, OF S]])qedlemma lim_ereal[simp]: "((\<lambda>n. ereal (f n)) \<longlongrightarrow> ereal x) net \<longleftrightarrow> (f \<longlongrightarrow> x) net" by (auto dest!: lim_real_of_ereal)lemma convergent_real_imp_convergent_ereal: assumes "convergent a" shows "convergent (\<lambda>n. ereal (a n))" and "lim (\<lambda>n. ereal (a n)) = ereal (lim a)"proof - from assms obtain L where L: "a \<longlonglongrightarrow> L" unfolding convergent_def .. hence lim: "(\<lambda>n. ereal (a n)) \<longlonglongrightarrow> ereal L" using lim_ereal by auto thus "convergent (\<lambda>n. ereal (a n))" unfolding convergent_def .. thus "lim (\<lambda>n. ereal (a n)) = ereal (lim a)" using lim L limI by metisqedlemma tendsto_PInfty: "(f \<longlongrightarrow> \<infinity>) F \<longleftrightarrow> (\<forall>r. eventually (\<lambda>x. ereal r < f x) F)"proof - { fix l :: ereal assume "\<forall>r. eventually (\<lambda>x. ereal r < f x) F" from this[THEN spec, of "real_of_ereal l"] have "l \<noteq> \<infinity> \<Longrightarrow> eventually (\<lambda>x. l < f x) F" by (cases l) (auto elim: eventually_mono) } then show ?thesis by (auto simp: order_tendsto_iff)qedlemma tendsto_PInfty': "(f \<longlongrightarrow> \<infinity>) F = (\<forall>r>c. eventually (\<lambda>x. ereal r < f x) F)"proof (subst tendsto_PInfty, intro iffI allI impI) assume A: "\<forall>r>c. eventually (\<lambda>x. ereal r < f x) F" fix r :: real from A have A: "eventually (\<lambda>x. ereal r < f x) F" if "r > c" for r using that by blast show "eventually (\<lambda>x. ereal r < f x) F" proof (cases "r > c") case False hence B: "ereal r \<le> ereal (c + 1)" by simp have "c < c + 1" by simp from A[OF this] show "eventually (\<lambda>x. ereal r < f x) F" by eventually_elim (rule le_less_trans[OF B]) qed (simp add: A)qed simplemma tendsto_PInfty_eq_at_top: "((\<lambda>z. ereal (f z)) \<longlongrightarrow> \<infinity>) F \<longleftrightarrow> (LIM z F. f z :> at_top)" unfolding tendsto_PInfty filterlim_at_top_dense by simplemma tendsto_MInfty: "(f \<longlongrightarrow> -\<infinity>) F \<longleftrightarrow> (\<forall>r. eventually (\<lambda>x. f x < ereal r) F)" unfolding tendsto_defproof safe fix S :: "ereal set" assume "open S" "-\<infinity> \<in> S" from open_MInfty[OF this] obtain B where "{..<ereal B} \<subseteq> S" .. moreover assume "\<forall>r::real. eventually (\<lambda>z. f z < r) F" then have "eventually (\<lambda>z. f z \<in> {..< B}) F" by auto ultimately show "eventually (\<lambda>z. f z \<in> S) F" by (auto elim!: eventually_mono)next fix x assume "\<forall>S. open S \<longrightarrow> -\<infinity> \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) F" from this[rule_format, of "{..< ereal x}"] show "eventually (\<lambda>y. f y < ereal x) F" by autoqedlemma tendsto_MInfty': "(f \<longlongrightarrow> -\<infinity>) F = (\<forall>r<c. eventually (\<lambda>x. ereal r > f x) F)"proof (subst tendsto_MInfty, intro iffI allI impI) assume A: "\<forall>r<c. eventually (\<lambda>x. ereal r > f x) F" fix r :: real from A have A: "eventually (\<lambda>x. ereal r > f x) F" if "r < c" for r using that by blast show "eventually (\<lambda>x. ereal r > f x) F" proof (cases "r < c") case False hence B: "ereal r \<ge> ereal (c - 1)" by simp have "c > c - 1" by simp from A[OF this] show "eventually (\<lambda>x. ereal r > f x) F" by eventually_elim (erule less_le_trans[OF _ B]) qed (simp add: A)qed simplemma Lim_PInfty: "f \<longlonglongrightarrow> \<infinity> \<longleftrightarrow> (\<forall>B. \<exists>N. \<forall>n\<ge>N. f n \<ge> ereal B)" unfolding tendsto_PInfty eventually_sequentiallyproof safe fix r assume "\<forall>r. \<exists>N. \<forall>n\<ge>N. ereal r \<le> f n" then obtain N where "\<forall>n\<ge>N. ereal (r + 1) \<le> f n" by blast moreover have "ereal r < ereal (r + 1)" by auto ultimately show "\<exists>N. \<forall>n\<ge>N. ereal r < f n" by (blast intro: less_le_trans)qed (blast intro: less_imp_le)lemma Lim_MInfty: "f \<longlonglongrightarrow> -\<infinity> \<longleftrightarrow> (\<forall>B. \<exists>N. \<forall>n\<ge>N. ereal B \<ge> f n)" unfolding tendsto_MInfty eventually_sequentiallyproof safe fix r assume "\<forall>r. \<exists>N. \<forall>n\<ge>N. f n \<le> ereal r" then obtain N where "\<forall>n\<ge>N. f n \<le> ereal (r - 1)" by blast moreover have "ereal (r - 1) < ereal r" by auto ultimately show "\<exists>N. \<forall>n\<ge>N. f n < ereal r" by (blast intro: le_less_trans)qed (blast intro: less_imp_le)lemma Lim_bounded_PInfty: "f \<longlonglongrightarrow> l \<Longrightarrow> (\<And>n. f n \<le> ereal B) \<Longrightarrow> l \<noteq> \<infinity>" using LIMSEQ_le_const2[of f l "ereal B"] by autolemma Lim_bounded_MInfty: "f \<longlonglongrightarrow> l \<Longrightarrow> (\<And>n. ereal B \<le> f n) \<Longrightarrow> l \<noteq> -\<infinity>" using LIMSEQ_le_const[of f l "ereal B"] by autolemma tendsto_zero_erealI: assumes "\<And>e. e > 0 \<Longrightarrow> eventually (\<lambda>x. \<bar>f x\<bar> < ereal e) F" shows "(f \<longlongrightarrow> 0) F"proof (subst filterlim_cong[OF refl refl]) from assms[OF zero_less_one] show "eventually (\<lambda>x. f x = ereal (real_of_ereal (f x))) F" by eventually_elim (auto simp: ereal_real) hence "eventually (\<lambda>x. abs (real_of_ereal (f x)) < e) F" if "e > 0" for e using assms[OF that] by eventually_elim (simp add: real_less_ereal_iff that) hence "((\<lambda>x. real_of_ereal (f x)) \<longlongrightarrow> 0) F" unfolding tendsto_iff by (auto simp: tendsto_iff dist_real_def) thus "((\<lambda>x. ereal (real_of_ereal (f x))) \<longlongrightarrow> 0) F" by (simp add: zero_ereal_def)qedlemma Lim_bounded_PInfty2: "f \<longlonglongrightarrow> l \<Longrightarrow> \<forall>n\<ge>N. f n \<le> ereal B \<Longrightarrow> l \<noteq> \<infinity>" using LIMSEQ_le_const2[of f l "ereal B"] by fastforcelemma real_of_ereal_mult[simp]: fixes a b :: ereal shows "real_of_ereal (a * b) = real_of_ereal a * real_of_ereal b" by (cases rule: ereal2_cases[of a b]) autolemma real_of_ereal_eq_0: fixes x :: ereal shows "real_of_ereal x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity> \<or> x = 0" by (cases x) autolemma tendsto_ereal_realD: fixes f :: "'a \<Rightarrow> ereal" assumes "x \<noteq> 0" and tendsto: "((\<lambda>x. ereal (real_of_ereal (f x))) \<longlongrightarrow> x) net" shows "(f \<longlongrightarrow> x) net"proof (intro topological_tendstoI) fix S assume S: "open S" "x \<in> S" with \<open>x \<noteq> 0\<close> have "open (S - {0})" "x \<in> S - {0}" by auto from tendsto[THEN topological_tendstoD, OF this] show "eventually (\<lambda>x. f x \<in> S) net" by (rule eventually_rev_mp) (auto simp: ereal_real)qedlemma tendsto_ereal_realI: fixes f :: "'a \<Rightarrow> ereal" assumes x: "\<bar>x\<bar> \<noteq> \<infinity>" and tendsto: "(f \<longlongrightarrow> x) net" shows "((\<lambda>x. ereal (real_of_ereal (f x))) \<longlongrightarrow> x) net"proof (intro topological_tendstoI) fix S assume "open S" and "x \<in> S" with x have "open (S - {\<infinity>, -\<infinity>})" "x \<in> S - {\<infinity>, -\<infinity>}" by auto from tendsto[THEN topological_tendstoD, OF this] show "eventually (\<lambda>x. ereal (real_of_ereal (f x)) \<in> S) net" by (elim eventually_mono) (auto simp: ereal_real)qedlemma ereal_mult_cancel_left: fixes a b c :: ereal shows "a * b = a * c \<longleftrightarrow> (\<bar>a\<bar> = \<infinity> \<and> 0 < b * c) \<or> a = 0 \<or> b = c" by (cases rule: ereal3_cases[of a b c]) (simp_all add: zero_less_mult_iff)lemma tendsto_add_ereal: fixes x y :: ereal assumes x: "\<bar>x\<bar> \<noteq> \<infinity>" and y: "\<bar>y\<bar> \<noteq> \<infinity>" assumes f: "(f \<longlongrightarrow> x) F" and g: "(g \<longlongrightarrow> y) F" shows "((\<lambda>x. f x + g x) \<longlongrightarrow> x + y) F"proof - from x obtain r where x': "x = ereal r" by (cases x) auto with f have "((\<lambda>i. real_of_ereal (f i)) \<longlongrightarrow> r) F" by simp moreover from y obtain p where y': "y = ereal p" by (cases y) auto with g have "((\<lambda>i. real_of_ereal (g i)) \<longlongrightarrow> p) F" by simp ultimately have "((\<lambda>i. real_of_ereal (f i) + real_of_ereal (g i)) \<longlongrightarrow> r + p) F" by (rule tendsto_add) moreover from eventually_finite[OF x f] eventually_finite[OF y g] have "eventually (\<lambda>x. f x + g x = ereal (real_of_ereal (f x) + real_of_ereal (g x))) F" by eventually_elim auto ultimately show ?thesis by (simp add: x' y' cong: filterlim_cong)qedlemma tendsto_add_ereal_nonneg: fixes x y :: "ereal" assumes "x \<noteq> -\<infinity>" "y \<noteq> -\<infinity>" "(f \<longlongrightarrow> x) F" "(g \<longlongrightarrow> y) F" shows "((\<lambda>x. f x + g x) \<longlongrightarrow> x + y) F"proof cases assume "x = \<infinity> \<or> y = \<infinity>" moreover { fix y :: ereal and f g :: "'a \<Rightarrow> ereal" assume "y \<noteq> -\<infinity>" "(f \<longlongrightarrow> \<infinity>) F" "(g \<longlongrightarrow> y) F" then obtain y' where "-\<infinity> < y'" "y' < y" using dense[of "-\<infinity>" y] by auto have "((\<lambda>x. f x + g x) \<longlongrightarrow> \<infinity>) F" proof (rule tendsto_sandwich) have "\<forall>\<^sub>F x in F. y' < g x" using order_tendstoD(1)[OF \<open>(g \<longlongrightarrow> y) F\<close> \<open>y' < y\<close>] by auto then show "\<forall>\<^sub>F x in F. f x + y' \<le> f x + g x" by eventually_elim (auto intro!: add_mono) show "\<forall>\<^sub>F n in F. f n + g n \<le> \<infinity>" "((\<lambda>n. \<infinity>) \<longlongrightarrow> \<infinity>) F" by auto show "((\<lambda>x. f x + y') \<longlongrightarrow> \<infinity>) F" using tendsto_cadd_ereal[of y' \<infinity> f F] \<open>(f \<longlongrightarrow> \<infinity>) F\<close> \<open>-\<infinity> < y'\<close> by auto qed } note this[of y f g] this[of x g f] ultimately show ?thesis using assms by (auto simp: add_ac)next assume "\<not> (x = \<infinity> \<or> y = \<infinity>)" with assms tendsto_add_ereal[of x y f F g] show ?thesis by autoqedlemma ereal_inj_affinity: fixes m t :: ereal assumes "\<bar>m\<bar> \<noteq> \<infinity>" and "m \<noteq> 0" and "\<bar>t\<bar> \<noteq> \<infinity>" shows "inj_on (\<lambda>x. m * x + t) A" using assms by (cases rule: ereal2_cases[of m t]) (auto intro!: inj_onI simp: ereal_add_cancel_right ereal_mult_cancel_left)lemma ereal_PInfty_eq_plus[simp]: fixes a b :: ereal shows "\<infinity> = a + b \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>" by (cases rule: ereal2_cases[of a b]) autolemma ereal_MInfty_eq_plus[simp]: fixes a b :: ereal shows "-\<infinity> = a + b \<longleftrightarrow> (a = -\<infinity> \<and> b \<noteq> \<infinity>) \<or> (b = -\<infinity> \<and> a \<noteq> \<infinity>)" by (cases rule: ereal2_cases[of a b]) autolemma ereal_less_divide_pos: fixes x y :: ereal shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y < z / x \<longleftrightarrow> x * y < z" by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)lemma ereal_divide_less_pos: fixes x y z :: ereal shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y / x < z \<longleftrightarrow> y < x * z" by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)lemma ereal_divide_eq: fixes a b c :: ereal shows "b \<noteq> 0 \<Longrightarrow> \<bar>b\<bar> \<noteq> \<infinity> \<Longrightarrow> a / b = c \<longleftrightarrow> a = b * c" by (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps)lemma ereal_inverse_not_MInfty[simp]: "inverse (a::ereal) \<noteq> -\<infinity>" by (cases a) autolemma ereal_mult_m1[simp]: "x * ereal (-1) = -x" by (cases x) autolemma ereal_real': assumes "\<bar>x\<bar> \<noteq> \<infinity>" shows "ereal (real_of_ereal x) = x" using assms by autolemma real_ereal_id: "real_of_ereal \<circ> ereal = id"proof - { fix x have "(real_of_ereal \<circ> ereal) x = id x" by auto } then show ?thesis using ext by blastqedlemma open_image_ereal: "open(UNIV-{ \<infinity> , (-\<infinity> :: ereal)})" by (metis range_ereal open_ereal open_UNIV)lemma ereal_le_distrib: fixes a b c :: ereal shows "c * (a + b) \<le> c * a + c * b" by (cases rule: ereal3_cases[of a b c]) (auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff)lemma ereal_pos_distrib: fixes a b c :: ereal assumes "0 \<le> c" and "c \<noteq> \<infinity>" shows "c * (a + b) = c * a + c * b" using assms by (cases rule: ereal3_cases[of a b c]) (auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff)lemma ereal_LimI_finite: fixes x :: ereal assumes "\<bar>x\<bar> \<noteq> \<infinity>" and "\<And>r. 0 < r \<Longrightarrow> \<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r" shows "u \<longlonglongrightarrow> x"proof (rule topological_tendstoI, unfold eventually_sequentially) obtain rx where rx: "x = ereal rx" using assms by (cases x) auto fix S assume "open S" and "x \<in> S" then have "open (ereal -` S)" unfolding open_ereal_def by auto with \<open>x \<in> S\<close> obtain r where "0 < r" and dist: "dist y rx < r \<Longrightarrow> ereal y \<in> S" for y unfolding open_dist rx by auto then obtain n where upper: "u N < x + ereal r" and lower: "x < u N + ereal r" if "n \<le> N" for N using assms(2)[of "ereal r"] by auto show "\<exists>N. \<forall>n\<ge>N. u n \<in> S" proof (safe intro!: exI[of _ n]) fix N assume "n \<le> N" from upper[OF this] lower[OF this] assms \<open>0 < r\<close> have "u N \<notin> {\<infinity>,(-\<infinity>)}" by auto then obtain ra where ra_def: "(u N) = ereal ra" by (cases "u N") auto then have "rx < ra + r" and "ra < rx + r" using rx assms \<open>0 < r\<close> lower[OF \<open>n \<le> N\<close>] upper[OF \<open>n \<le> N\<close>] by auto then have "dist (real_of_ereal (u N)) rx < r" using rx ra_def by (auto simp: dist_real_def abs_diff_less_iff field_simps) from dist[OF this] show "u N \<in> S" using \<open>u N \<notin> {\<infinity>, -\<infinity>}\<close> by (auto simp: ereal_real split: if_split_asm) qedqedlemma tendsto_obtains_N: assumes "f \<longlonglongrightarrow> f0" assumes "open S" and "f0 \<in> S" obtains N where "\<forall>n\<ge>N. f n \<in> S" using assms using tendsto_def using lim_explicit[of f f0] assms by autolemma ereal_LimI_finite_iff: fixes x :: ereal assumes "\<bar>x\<bar> \<noteq> \<infinity>" shows "u \<longlonglongrightarrow> x \<longleftrightarrow> (\<forall>r. 0 < r \<longrightarrow> (\<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r))" (is "?lhs \<longleftrightarrow> ?rhs")proof assume lim: "u \<longlonglongrightarrow> x" { fix r :: ereal assume "r > 0" then obtain N where "\<forall>n\<ge>N. u n \<in> {x - r <..< x + r}" apply (subst tendsto_obtains_N[of u x "{x - r <..< x + r}"]) using lim ereal_between[of x r] assms \<open>r > 0\<close> apply auto done then have "\<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r" using ereal_minus_less[of r x] by (cases r) auto } then show ?rhs by autonext assume ?rhs then show "u \<longlonglongrightarrow> x" using ereal_LimI_finite[of x] assms by autoqedlemma ereal_Limsup_uminus: fixes f :: "'a \<Rightarrow> ereal" shows "Limsup net (\<lambda>x. - (f x)) = - Liminf net f" unfolding Limsup_def Liminf_def ereal_SUP_uminus ereal_INF_uminus_eq ..lemma liminf_bounded_iff: fixes x :: "nat \<Rightarrow> ereal" shows "C \<le> liminf x \<longleftrightarrow> (\<forall>B<C. \<exists>N. \<forall>n\<ge>N. B < x n)" (is "?lhs \<longleftrightarrow> ?rhs") unfolding le_Liminf_iff eventually_sequentially ..lemma Liminf_add_le: fixes f g :: "_ \<Rightarrow> ereal" assumes F: "F \<noteq> bot" assumes ev: "eventually (\<lambda>x. 0 \<le> f x) F" "eventually (\<lambda>x. 0 \<le> g x) F" shows "Liminf F f + Liminf F g \<le> Liminf F (\<lambda>x. f x + g x)" unfolding Liminf_defproof (subst SUP_ereal_add_left[symmetric]) let ?F = "{P. eventually P F}" let ?INF = "\<lambda>P g. Inf (g ` (Collect P))" show "?F \<noteq> {}" by (auto intro: eventually_True) show "(SUP P\<in>?F. ?INF P g) \<noteq> - \<infinity>" unfolding bot_ereal_def[symmetric] SUP_bot_conv INF_eq_bot_iff by (auto intro!: exI[of _ 0] ev simp: bot_ereal_def) have "(SUP P\<in>?F. ?INF P f + (SUP P\<in>?F. ?INF P g)) \<le> (SUP P\<in>?F. (SUP P'\<in>?F. ?INF P f + ?INF P' g))" proof (safe intro!: SUP_mono bexI[of _ "\<lambda>x. P x \<and> 0 \<le> f x" for P]) fix P let ?P' = "\<lambda>x. P x \<and> 0 \<le> f x" assume "eventually P F" with ev show "eventually ?P' F" by eventually_elim auto have "?INF P f + (SUP P\<in>?F. ?INF P g) \<le> ?INF ?P' f + (SUP P\<in>?F. ?INF P g)" by (intro add_mono INF_mono) auto also have "\<dots> = (SUP P'\<in>?F. ?INF ?P' f + ?INF P' g)" proof (rule SUP_ereal_add_right[symmetric]) show "Inf (f ` {x. P x \<and> 0 \<le> f x}) \<noteq> - \<infinity>" unfolding bot_ereal_def[symmetric] INF_eq_bot_iff by (auto intro!: exI[of _ 0] ev simp: bot_ereal_def) qed fact finally show "?INF P f + (SUP P\<in>?F. ?INF P g) \<le> (SUP P'\<in>?F. ?INF ?P' f + ?INF P' g)" . qed also have "\<dots> \<le> (SUP P\<in>?F. INF x\<in>Collect P. f x + g x)" proof (safe intro!: SUP_least) fix P Q assume *: "eventually P F" "eventually Q F" show "?INF P f + ?INF Q g \<le> (SUP P\<in>?F. INF x\<in>Collect P. f x + g x)" proof (rule SUP_upper2) show "(\<lambda>x. P x \<and> Q x) \<in> ?F" using * by (auto simp: eventually_conj) show "?INF P f + ?INF Q g \<le> (INF x\<in>{x. P x \<and> Q x}. f x + g x)" by (intro INF_greatest add_mono) (auto intro: INF_lower) qed qed finally show "(SUP P\<in>?F. ?INF P f + (SUP P\<in>?F. ?INF P g)) \<le> (SUP P\<in>?F. INF x\<in>Collect P. f x + g x)" .qedlemma Sup_ereal_mult_right': assumes nonempty: "Y \<noteq> {}" and x: "x \<ge> 0" shows "(SUP i\<in>Y. f i) * ereal x = (SUP i\<in>Y. f i * ereal x)" (is "?lhs = ?rhs")proof(cases "x = 0") case True thus ?thesis by(auto simp add: nonempty zero_ereal_def[symmetric])next case False show ?thesis proof(rule antisym) show "?rhs \<le> ?lhs" by(rule SUP_least)(simp add: ereal_mult_right_mono SUP_upper x) next have "?lhs / ereal x = (SUP i\<in>Y. f i) * (ereal x / ereal x)" by(simp only: ereal_times_divide_eq) also have "\<dots> = (SUP i\<in>Y. f i)" using False by simp also have "\<dots> \<le> ?rhs / x" proof(rule SUP_least) fix i assume "i \<in> Y" have "f i = f i * (ereal x / ereal x)" using False by simp also have "\<dots> = f i * x / x" by(simp only: ereal_times_divide_eq) also from \<open>i \<in> Y\<close> have "f i * x \<le> ?rhs" by(rule SUP_upper) hence "f i * x / x \<le> ?rhs / x" using x False by simp finally show "f i \<le> ?rhs / x" . qed finally have "(?lhs / x) * x \<le> (?rhs / x) * x" by(rule ereal_mult_right_mono)(simp add: x) also have "\<dots> = ?rhs" using False ereal_divide_eq mult.commute by force also have "(?lhs / x) * x = ?lhs" using False ereal_divide_eq mult.commute by force finally show "?lhs \<le> ?rhs" . qedqedlemma Sup_ereal_mult_left': "\<lbrakk> Y \<noteq> {}; x \<ge> 0 \<rbrakk> \<Longrightarrow> ereal x * (SUP i\<in>Y. f i) = (SUP i\<in>Y. ereal x * f i)"by(subst (1 2) mult.commute)(rule Sup_ereal_mult_right')lemma sup_continuous_add[order_continuous_intros]: fixes f g :: "'a::complete_lattice \<Rightarrow> ereal" assumes nn: "\<And>x. 0 \<le> f x" "\<And>x. 0 \<le> g x" and cont: "sup_continuous f" "sup_continuous g" shows "sup_continuous (\<lambda>x. f x + g x)" unfolding sup_continuous_defproof safe fix M :: "nat \<Rightarrow> 'a" assume "incseq M" then show "f (SUP i. M i) + g (SUP i. M i) = (SUP i. f (M i) + g (M i))" using SUP_ereal_add_pos[of "\<lambda>i. f (M i)" "\<lambda>i. g (M i)"] nn cont[THEN sup_continuous_mono] cont[THEN sup_continuousD] by (auto simp: mono_def)qedlemma sup_continuous_mult_right[order_continuous_intros]: "0 \<le> c \<Longrightarrow> c < \<infinity> \<Longrightarrow> sup_continuous f \<Longrightarrow> sup_continuous (\<lambda>x. f x * c :: ereal)" by (cases c) (auto simp: sup_continuous_def fun_eq_iff Sup_ereal_mult_right')lemma sup_continuous_mult_left[order_continuous_intros]: "0 \<le> c \<Longrightarrow> c < \<infinity> \<Longrightarrow> sup_continuous f \<Longrightarrow> sup_continuous (\<lambda>x. c * f x :: ereal)" using sup_continuous_mult_right[of c f] by (simp add: mult_ac)lemma sup_continuous_ereal_of_enat[order_continuous_intros]: assumes f: "sup_continuous f" shows "sup_continuous (\<lambda>x. ereal_of_enat (f x))" by (rule sup_continuous_compose[OF _ f]) (auto simp: sup_continuous_def ereal_of_enat_SUP)subsubsection \<open>Sums\<close>lemma sums_ereal_positive: fixes f :: "nat \<Rightarrow> ereal" assumes "\<And>i. 0 \<le> f i" shows "f sums (SUP n. \<Sum>i<n. f i)"proof - have "incseq (\<lambda>i. \<Sum>j=0..<i. f j)" using add_mono[OF _ assms] by (auto intro!: incseq_SucI) from LIMSEQ_SUP[OF this] show ?thesis unfolding sums_def by (simp add: atLeast0LessThan)qedlemma summable_ereal_pos: fixes f :: "nat \<Rightarrow> ereal" assumes "\<And>i. 0 \<le> f i" shows "summable f" using sums_ereal_positive[of f, OF assms] unfolding summable_def by autolemma sums_ereal: "(\<lambda>x. ereal (f x)) sums ereal x \<longleftrightarrow> f sums x" unfolding sums_def by simplemma suminf_ereal_eq_SUP: fixes f :: "nat \<Rightarrow> ereal" assumes "\<And>i. 0 \<le> f i" shows "(\<Sum>x. f x) = (SUP n. \<Sum>i<n. f i)" using sums_ereal_positive[of f, OF assms, THEN sums_unique] by simplemma suminf_bound: fixes f :: "nat \<Rightarrow> ereal" assumes "\<forall>N. (\<Sum>n<N. f n) \<le> x" and pos: "\<And>n. 0 \<le> f n" shows "suminf f \<le> x"proof (rule Lim_bounded) have "summable f" using pos[THEN summable_ereal_pos] . then show "(\<lambda>N. \<Sum>n<N. f n) \<longlonglongrightarrow> suminf f" by (auto dest!: summable_sums simp: sums_def atLeast0LessThan) show "\<forall>n\<ge>0. sum f {..<n} \<le> x" using assms by autoqedlemma suminf_bound_add: fixes f :: "nat \<Rightarrow> ereal" assumes "\<forall>N. (\<Sum>n<N. f n) + y \<le> x" and pos: "\<And>n. 0 \<le> f n" and "y \<noteq> -\<infinity>" shows "suminf f + y \<le> x"proof (cases y) case (real r) then have "\<forall>N. (\<Sum>n<N. f n) \<le> x - y" using assms by (simp add: ereal_le_minus) then have "(\<Sum> n. f n) \<le> x - y" using pos by (rule suminf_bound) then show "(\<Sum> n. f n) + y \<le> x" using assms real by (simp add: ereal_le_minus)qed (insert assms, auto)lemma suminf_upper: fixes f :: "nat \<Rightarrow> ereal" assumes "\<And>n. 0 \<le> f n" shows "(\<Sum>n<N. f n) \<le> (\<Sum>n. f n)" unfolding suminf_ereal_eq_SUP [OF assms] by (auto intro: complete_lattice_class.SUP_upper)lemma suminf_0_le: fixes f :: "nat \<Rightarrow> ereal" assumes "\<And>n. 0 \<le> f n" shows "0 \<le> (\<Sum>n. f n)" using suminf_upper[of f 0, OF assms] by simplemma suminf_le_pos: fixes f g :: "nat \<Rightarrow> ereal" assumes "\<And>N. f N \<le> g N" and "\<And>N. 0 \<le> f N" shows "suminf f \<le> suminf g"proof (safe intro!: suminf_bound) fix n { fix N have "0 \<le> g N" using assms(2,1)[of N] by auto } have "sum f {..<n} \<le> sum g {..<n}" using assms by (auto intro: sum_mono) also have "\<dots> \<le> suminf g" using \<open>\<And>N. 0 \<le> g N\<close> by (rule suminf_upper) finally show "sum f {..<n} \<le> suminf g" .qed (rule assms(2))lemma suminf_half_series_ereal: "(\<Sum>n. (1/2 :: ereal) ^ Suc n) = 1" using sums_ereal[THEN iffD2, OF power_half_series, THEN sums_unique, symmetric] by (simp add: one_ereal_def)lemma suminf_add_ereal: fixes f g :: "nat \<Rightarrow> ereal" assumes "\<And>i. 0 \<le> f i" and "\<And>i. 0 \<le> g i" shows "(\<Sum>i. f i + g i) = suminf f + suminf g" apply (subst (1 2 3) suminf_ereal_eq_SUP) unfolding sum.distrib apply (intro assms add_nonneg_nonneg SUP_ereal_add_pos incseq_sumI sum_nonneg ballI)+ donelemma suminf_cmult_ereal: fixes f g :: "nat \<Rightarrow> ereal" assumes "\<And>i. 0 \<le> f i" and "0 \<le> a" shows "(\<Sum>i. a * f i) = a * suminf f" by (auto simp: sum_ereal_right_distrib[symmetric] assms ereal_zero_le_0_iff sum_nonneg suminf_ereal_eq_SUP intro!: SUP_ereal_mult_left)lemma suminf_PInfty: fixes f :: "nat \<Rightarrow> ereal" assumes "\<And>i. 0 \<le> f i" and "suminf f \<noteq> \<infinity>" shows "f i \<noteq> \<infinity>"proof - from suminf_upper[of f "Suc i", OF assms(1)] assms(2) have "(\<Sum>i<Suc i. f i) \<noteq> \<infinity>" by auto then show ?thesis unfolding sum_Pinfty by simpqedlemma suminf_PInfty_fun: assumes "\<And>i. 0 \<le> f i" and "suminf f \<noteq> \<infinity>" shows "\<exists>f'. f = (\<lambda>x. ereal (f' x))"proof - have "\<forall>i. \<exists>r. f i = ereal r" proof fix i show "\<exists>r. f i = ereal r" using suminf_PInfty[OF assms] assms(1)[of i] by (cases "f i") auto qed from choice[OF this] show ?thesis by autoqedlemma summable_ereal: assumes "\<And>i. 0 \<le> f i" and "(\<Sum>i. ereal (f i)) \<noteq> \<infinity>" shows "summable f"proof - have "0 \<le> (\<Sum>i. ereal (f i))" using assms by (intro suminf_0_le) auto with assms obtain r where r: "(\<Sum>i. ereal (f i)) = ereal r" by (cases "\<Sum>i. ereal (f i)") auto from summable_ereal_pos[of "\<lambda>x. ereal (f x)"] have "summable (\<lambda>x. ereal (f x))" using assms by auto from summable_sums[OF this] have "(\<lambda>x. ereal (f x)) sums (\<Sum>x. ereal (f x))" by auto then show "summable f" unfolding r sums_ereal summable_def ..qedlemma suminf_ereal: assumes "\<And>i. 0 \<le> f i" and "(\<Sum>i. ereal (f i)) \<noteq> \<infinity>" shows "(\<Sum>i. ereal (f i)) = ereal (suminf f)"proof (rule sums_unique[symmetric]) from summable_ereal[OF assms] show "(\<lambda>x. ereal (f x)) sums (ereal (suminf f))" unfolding sums_ereal using assms by (intro summable_sums summable_ereal)qedlemma suminf_ereal_minus: fixes f g :: "nat \<Rightarrow> ereal" assumes ord: "\<And>i. g i \<le> f i" "\<And>i. 0 \<le> g i" and fin: "suminf f \<noteq> \<infinity>" "suminf g \<noteq> \<infinity>" shows "(\<Sum>i. f i - g i) = suminf f - suminf g"proof - { fix i have "0 \<le> f i" using ord[of i] by auto } moreover from suminf_PInfty_fun[OF \<open>\<And>i. 0 \<le> f i\<close> fin(1)] obtain f' where [simp]: "f = (\<lambda>x. ereal (f' x))" .. from suminf_PInfty_fun[OF \<open>\<And>i. 0 \<le> g i\<close> fin(2)] obtain g' where [simp]: "g = (\<lambda>x. ereal (g' x))" .. { fix i have "0 \<le> f i - g i" using ord[of i] by (auto simp: ereal_le_minus_iff) } moreover have "suminf (\<lambda>i. f i - g i) \<le> suminf f" using assms by (auto intro!: suminf_le_pos simp: field_simps) then have "suminf (\<lambda>i. f i - g i) \<noteq> \<infinity>" using fin by auto ultimately show ?thesis using assms \<open>\<And>i. 0 \<le> f i\<close> apply simp apply (subst (1 2 3) suminf_ereal) apply (auto intro!: suminf_diff[symmetric] summable_ereal) doneqedlemma suminf_ereal_PInf [simp]: "(\<Sum>x. \<infinity>::ereal) = \<infinity>"proof - have "(\<Sum>i<Suc 0. \<infinity>) \<le> (\<Sum>x. \<infinity>::ereal)" by (rule suminf_upper) auto then show ?thesis by simpqedlemma summable_real_of_ereal: fixes f :: "nat \<Rightarrow> ereal" assumes f: "\<And>i. 0 \<le> f i" and fin: "(\<Sum>i. f i) \<noteq> \<infinity>" shows "summable (\<lambda>i. real_of_ereal (f i))"proof (rule summable_def[THEN iffD2]) have "0 \<le> (\<Sum>i. f i)" using assms by (auto intro: suminf_0_le) with fin obtain r where r: "ereal r = (\<Sum>i. f i)" by (cases "(\<Sum>i. f i)") auto { fix i have "f i \<noteq> \<infinity>" using f by (intro suminf_PInfty[OF _ fin]) auto then have "\<bar>f i\<bar> \<noteq> \<infinity>" using f[of i] by auto } note fin = this have "(\<lambda>i. ereal (real_of_ereal (f i))) sums (\<Sum>i. ereal (real_of_ereal (f i)))" using f by (auto intro!: summable_ereal_pos simp: ereal_le_real_iff zero_ereal_def) also have "\<dots> = ereal r" using fin r by (auto simp: ereal_real) finally show "\<exists>r. (\<lambda>i. real_of_ereal (f i)) sums r" by (auto simp: sums_ereal)qedlemma suminf_SUP_eq: fixes f :: "nat \<Rightarrow> nat \<Rightarrow> ereal" assumes "\<And>i. incseq (\<lambda>n. f n i)" and "\<And>n i. 0 \<le> f n i" shows "(\<Sum>i. SUP n. f n i) = (SUP n. \<Sum>i. f n i)"proof - { fix n :: nat have "(\<Sum>i<n. SUP k. f k i) = (SUP k. \<Sum>i<n. f k i)" using assms by (auto intro!: SUP_ereal_sum [symmetric]) } note * = this show ?thesis using assms apply (subst (1 2) suminf_ereal_eq_SUP) unfolding * apply (auto intro!: SUP_upper2) apply (subst SUP_commute) apply rule doneqedlemma suminf_sum_ereal: fixes f :: "_ \<Rightarrow> _ \<Rightarrow> ereal" assumes nonneg: "\<And>i a. a \<in> A \<Longrightarrow> 0 \<le> f i a" shows "(\<Sum>i. \<Sum>a\<in>A. f i a) = (\<Sum>a\<in>A. \<Sum>i. f i a)"proof (cases "finite A") case True then show ?thesis using nonneg by induct (simp_all add: suminf_add_ereal sum_nonneg)next case False then show ?thesis by simpqedlemma suminf_ereal_eq_0: fixes f :: "nat \<Rightarrow> ereal" assumes nneg: "\<And>i. 0 \<le> f i" shows "(\<Sum>i. f i) = 0 \<longleftrightarrow> (\<forall>i. f i = 0)"proof assume "(\<Sum>i. f i) = 0" { fix i assume "f i \<noteq> 0" with nneg have "0 < f i" by (auto simp: less_le) also have "f i = (\<Sum>j. if j = i then f i else 0)" by (subst suminf_finite[where N="{i}"]) auto also have "\<dots> \<le> (\<Sum>i. f i)" using nneg by (auto intro!: suminf_le_pos) finally have False using \<open>(\<Sum>i. f i) = 0\<close> by auto } then show "\<forall>i. f i = 0" by autoqed simplemma suminf_ereal_offset_le: fixes f :: "nat \<Rightarrow> ereal" assumes f: "\<And>i. 0 \<le> f i" shows "(\<Sum>i. f (i + k)) \<le> suminf f"proof - have "(\<lambda>n. \<Sum>i<n. f (i + k)) \<longlonglongrightarrow> (\<Sum>i. f (i + k))" using summable_sums[OF summable_ereal_pos] by (simp add: sums_def atLeast0LessThan f) moreover have "(\<lambda>n. \<Sum>i<n. f i) \<longlonglongrightarrow> (\<Sum>i. f i)" using summable_sums[OF summable_ereal_pos] by (simp add: sums_def atLeast0LessThan f) then have "(\<lambda>n. \<Sum>i<n + k. f i) \<longlonglongrightarrow> (\<Sum>i. f i)" by (rule LIMSEQ_ignore_initial_segment) ultimately show ?thesis proof (rule LIMSEQ_le, safe intro!: exI[of _ k]) fix n assume "k \<le> n" have "(\<Sum>i<n. f (i + k)) = (\<Sum>i<n. (f \<circ> plus k) i)" by (simp add: ac_simps) also have "\<dots> = (\<Sum>i\<in>(plus k) ` {..<n}. f i)" by (rule sum.reindex [symmetric]) simp also have "\<dots> \<le> sum f {..<n + k}" by (intro sum_mono2) (auto simp: f) finally show "(\<Sum>i<n. f (i + k)) \<le> sum f {..<n + k}" . qedqedlemma sums_suminf_ereal: "f sums x \<Longrightarrow> (\<Sum>i. ereal (f i)) = ereal x" by (metis sums_ereal sums_unique)lemma suminf_ereal': "summable f \<Longrightarrow> (\<Sum>i. ereal (f i)) = ereal (\<Sum>i. f i)" by (metis sums_ereal sums_unique summable_def)lemma suminf_ereal_finite: "summable f \<Longrightarrow> (\<Sum>i. ereal (f i)) \<noteq> \<infinity>" by (auto simp: summable_def simp flip: sums_ereal sums_unique)lemma suminf_ereal_finite_neg: assumes "summable f" shows "(\<Sum>x. ereal (f x)) \<noteq> -\<infinity>"proof- from assms obtain x where "f sums x" by blast hence "(\<lambda>x. ereal (f x)) sums ereal x" by (simp add: sums_ereal) from sums_unique[OF this] have "(\<Sum>x. ereal (f x)) = ereal x" .. thus "(\<Sum>x. ereal (f x)) \<noteq> -\<infinity>" by simp_allqedlemma SUP_ereal_add_directed: fixes f g :: "'a \<Rightarrow> ereal" assumes nonneg: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> g i" assumes directed: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> \<exists>k\<in>I. f i + g j \<le> f k + g k" shows "(SUP i\<in>I. f i + g i) = (SUP i\<in>I. f i) + (SUP i\<in>I. g i)"proof cases assume "I = {}" then show ?thesis by (simp add: bot_ereal_def)next assume "I \<noteq> {}" show ?thesis proof (rule antisym) show "(SUP i\<in>I. f i + g i) \<le> (SUP i\<in>I. f i) + (SUP i\<in>I. g i)" by (rule SUP_least; intro add_mono SUP_upper) next have "bot < (SUP i\<in>I. g i)" using \<open>I \<noteq> {}\<close> nonneg(2) by (auto simp: bot_ereal_def less_SUP_iff) then have "(SUP i\<in>I. f i) + (SUP i\<in>I. g i) = (SUP i\<in>I. f i + (SUP i\<in>I. g i))" by (intro SUP_ereal_add_left[symmetric] \<open>I \<noteq> {}\<close>) auto also have "\<dots> = (SUP i\<in>I. (SUP j\<in>I. f i + g j))" using nonneg(1) \<open>I \<noteq> {}\<close> by (simp add: SUP_ereal_add_right) also have "\<dots> \<le> (SUP i\<in>I. f i + g i)" using directed by (intro SUP_least) (blast intro: SUP_upper2) finally show "(SUP i\<in>I. f i) + (SUP i\<in>I. g i) \<le> (SUP i\<in>I. f i + g i)" . qedqedlemma SUP_ereal_sum_directed: fixes f g :: "'a \<Rightarrow> 'b \<Rightarrow> ereal" assumes "I \<noteq> {}" assumes directed: "\<And>N i j. N \<subseteq> A \<Longrightarrow> i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> \<exists>k\<in>I. \<forall>n\<in>N. f n i \<le> f n k \<and> f n j \<le> f n k" assumes nonneg: "\<And>n i. i \<in> I \<Longrightarrow> n \<in> A \<Longrightarrow> 0 \<le> f n i" shows "(SUP i\<in>I. \<Sum>n\<in>A. f n i) = (\<Sum>n\<in>A. SUP i\<in>I. f n i)"proof - have "N \<subseteq> A \<Longrightarrow> (SUP i\<in>I. \<Sum>n\<in>N. f n i) = (\<Sum>n\<in>N. SUP i\<in>I. f n i)" for N proof (induction N rule: infinite_finite_induct) case (insert n N) moreover have "(SUP i\<in>I. f n i + (\<Sum>l\<in>N. f l i)) = (SUP i\<in>I. f n i) + (SUP i\<in>I. \<Sum>l\<in>N. f l i)" proof (rule SUP_ereal_add_directed) fix i assume "i \<in> I" then show "0 \<le> f n i" "0 \<le> (\<Sum>l\<in>N. f l i)" using insert by (auto intro!: sum_nonneg nonneg) next fix i j assume "i \<in> I" "j \<in> I" from directed[OF \<open>insert n N \<subseteq> A\<close> this] guess k .. then show "\<exists>k\<in>I. f n i + (\<Sum>l\<in>N. f l j) \<le> f n k + (\<Sum>l\<in>N. f l k)" by (intro bexI[of _ k]) (auto intro!: add_mono sum_mono) qed ultimately show ?case by simp qed (simp_all add: SUP_constant \<open>I \<noteq> {}\<close>) from this[of A] show ?thesis by simpqedlemma suminf_SUP_eq_directed: fixes f :: "_ \<Rightarrow> nat \<Rightarrow> ereal" assumes "I \<noteq> {}" assumes directed: "\<And>N i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> finite N \<Longrightarrow> \<exists>k\<in>I. \<forall>n\<in>N. f i n \<le> f k n \<and> f j n \<le> f k n" assumes nonneg: "\<And>n i. 0 \<le> f n i" shows "(\<Sum>i. SUP n\<in>I. f n i) = (SUP n\<in>I. \<Sum>i. f n i)"proof (subst (1 2) suminf_ereal_eq_SUP) show "\<And>n i. 0 \<le> f n i" "\<And>i. 0 \<le> (SUP n\<in>I. f n i)" using \<open>I \<noteq> {}\<close> nonneg by (auto intro: SUP_upper2) show "(SUP n. \<Sum>i<n. SUP n\<in>I. f n i) = (SUP n\<in>I. SUP j. \<Sum>i<j. f n i)" apply (subst SUP_commute) apply (subst SUP_ereal_sum_directed) apply (auto intro!: assms simp: finite_subset) doneqedlemma ereal_dense3: fixes x y :: ereal shows "x < y \<Longrightarrow> \<exists>r::rat. x < real_of_rat r \<and> real_of_rat r < y"proof (cases x y rule: ereal2_cases, simp_all) fix r q :: real assume "r < q" from Rats_dense_in_real[OF this] show "\<exists>x. r < real_of_rat x \<and> real_of_rat x < q" by (fastforce simp: Rats_def)next fix r :: real show "\<exists>x. r < real_of_rat x" "\<exists>x. real_of_rat x < r" using gt_ex[of r] lt_ex[of r] Rats_dense_in_real by (auto simp: Rats_def)qedlemma continuous_within_ereal[intro, simp]: "x \<in> A \<Longrightarrow> continuous (at x within A) ereal" using continuous_on_eq_continuous_within[of A ereal] by (auto intro: continuous_on_ereal continuous_on_id)lemma ereal_open_uminus: fixes S :: "ereal set" assumes "open S" shows "open (uminus ` S)" using \<open>open S\<close>[unfolded open_generated_order]proof induct have "range uminus = (UNIV :: ereal set)" by (auto simp: image_iff ereal_uminus_eq_reorder) then show "open (range uminus :: ereal set)" by simpqed (auto simp add: image_Union image_Int)lemma ereal_uminus_complement: fixes S :: "ereal set" shows "uminus ` (- S) = - uminus ` S" by (auto intro!: bij_image_Compl_eq surjI[of _ uminus] simp: bij_betw_def)lemma ereal_closed_uminus: fixes S :: "ereal set" assumes "closed S" shows "closed (uminus ` S)" using assms unfolding closed_def ereal_uminus_complement[symmetric] by (rule ereal_open_uminus)lemma ereal_open_affinity_pos: fixes S :: "ereal set" assumes "open S" and m: "m \<noteq> \<infinity>" "0 < m" and t: "\<bar>t\<bar> \<noteq> \<infinity>" shows "open ((\<lambda>x. m * x + t) ` S)"proof - have "open ((\<lambda>x. inverse m * (x + -t)) -` S)" using m t apply (intro open_vimage \<open>open S\<close>) apply (intro continuous_at_imp_continuous_on ballI tendsto_cmult_ereal continuous_at[THEN iffD2] tendsto_ident_at tendsto_add_left_ereal) apply auto done also have "(\<lambda>x. inverse m * (x + -t)) -` S = (\<lambda>x. (x - t) / m) -` S" using m t by (auto simp: divide_ereal_def mult.commute minus_ereal_def simp flip: uminus_ereal.simps) also have "(\<lambda>x. (x - t) / m) -` S = (\<lambda>x. m * x + t) ` S" using m t by (simp add: set_eq_iff image_iff) (metis abs_ereal_less0 abs_ereal_uminus ereal_divide_eq ereal_eq_minus ereal_minus(7,8) ereal_minus_less_minus ereal_mult_eq_PInfty ereal_uminus_uminus ereal_zero_mult) finally show ?thesis .qedlemma ereal_open_affinity: fixes S :: "ereal set" assumes "open S" and m: "\<bar>m\<bar> \<noteq> \<infinity>" "m \<noteq> 0" and t: "\<bar>t\<bar> \<noteq> \<infinity>" shows "open ((\<lambda>x. m * x + t) ` S)"proof cases assume "0 < m" then show ?thesis using ereal_open_affinity_pos[OF \<open>open S\<close> _ _ t, of m] m by autonext assume "\<not> 0 < m" then have "0 < -m" using \<open>m \<noteq> 0\<close> by (cases m) auto then have m: "-m \<noteq> \<infinity>" "0 < -m" using \<open>\<bar>m\<bar> \<noteq> \<infinity>\<close> by (auto simp: ereal_uminus_eq_reorder) from ereal_open_affinity_pos[OF ereal_open_uminus[OF \<open>open S\<close>] m t] show ?thesis unfolding image_image by simpqedlemma open_uminus_iff: fixes S :: "ereal set" shows "open (uminus ` S) \<longleftrightarrow> open S" using ereal_open_uminus[of S] ereal_open_uminus[of "uminus ` S"] by autolemma ereal_Liminf_uminus: fixes f :: "'a \<Rightarrow> ereal" shows "Liminf net (\<lambda>x. - (f x)) = - Limsup net f" using ereal_Limsup_uminus[of _ "(\<lambda>x. - (f x))"] by autolemma Liminf_PInfty: fixes f :: "'a \<Rightarrow> ereal" assumes "\<not> trivial_limit net" shows "(f \<longlongrightarrow> \<infinity>) net \<longleftrightarrow> Liminf net f = \<infinity>" unfolding tendsto_iff_Liminf_eq_Limsup[OF assms] using Liminf_le_Limsup[OF assms, of f] by autolemma Limsup_MInfty: fixes f :: "'a \<Rightarrow> ereal" assumes "\<not> trivial_limit net" shows "(f \<longlongrightarrow> -\<infinity>) net \<longleftrightarrow> Limsup net f = -\<infinity>" unfolding tendsto_iff_Liminf_eq_Limsup[OF assms] using Liminf_le_Limsup[OF assms, of f] by autolemma convergent_ereal: \<comment> \<open>RENAME\<close> fixes X :: "nat \<Rightarrow> 'a :: {complete_linorder,linorder_topology}" shows "convergent X \<longleftrightarrow> limsup X = liminf X" using tendsto_iff_Liminf_eq_Limsup[of sequentially] by (auto simp: convergent_def)lemma limsup_le_liminf_real: fixes X :: "nat \<Rightarrow> real" and L :: real assumes 1: "limsup X \<le> L" and 2: "L \<le> liminf X" shows "X \<longlonglongrightarrow> L"proof - from 1 2 have "limsup X \<le> liminf X" by auto hence 3: "limsup X = liminf X" apply (subst eq_iff, rule conjI) by (rule Liminf_le_Limsup, auto) hence 4: "convergent (\<lambda>n. ereal (X n))" by (subst convergent_ereal) hence "limsup X = lim (\<lambda>n. ereal(X n))" by (rule convergent_limsup_cl) also from 1 2 3 have "limsup X = L" by auto finally have "lim (\<lambda>n. ereal(X n)) = L" .. hence "(\<lambda>n. ereal (X n)) \<longlonglongrightarrow> L" apply (elim subst) by (subst convergent_LIMSEQ_iff [symmetric], rule 4) thus ?thesis by simpqedlemma liminf_PInfty: fixes X :: "nat \<Rightarrow> ereal" shows "X \<longlonglongrightarrow> \<infinity> \<longleftrightarrow> liminf X = \<infinity>" by (metis Liminf_PInfty trivial_limit_sequentially)lemma limsup_MInfty: fixes X :: "nat \<Rightarrow> ereal" shows "X \<longlonglongrightarrow> -\<infinity> \<longleftrightarrow> limsup X = -\<infinity>" by (metis Limsup_MInfty trivial_limit_sequentially)lemma SUP_eq_LIMSEQ: assumes "mono f" shows "(SUP n. ereal (f n)) = ereal x \<longleftrightarrow> f \<longlonglongrightarrow> x"proof have inc: "incseq (\<lambda>i. ereal (f i))" using \<open>mono f\<close> unfolding mono_def incseq_def by auto { assume "f \<longlonglongrightarrow> x" then have "(\<lambda>i. ereal (f i)) \<longlonglongrightarrow> ereal x" by auto from SUP_Lim[OF inc this] show "(SUP n. ereal (f n)) = ereal x" . next assume "(SUP n. ereal (f n)) = ereal x" with LIMSEQ_SUP[OF inc] show "f \<longlonglongrightarrow> x" by auto }qedlemma liminf_ereal_cminus: fixes f :: "nat \<Rightarrow> ereal" assumes "c \<noteq> -\<infinity>" shows "liminf (\<lambda>x. c - f x) = c - limsup f"proof (cases c) case PInf then show ?thesis by (simp add: Liminf_const)next case (real r) then show ?thesis unfolding liminf_SUP_INF limsup_INF_SUP apply (subst INF_ereal_minus_right) apply auto apply (subst SUP_ereal_minus_right) apply auto doneqed (insert \<open>c \<noteq> -\<infinity>\<close>, simp)subsubsection \<open>Continuity\<close>lemma continuous_at_of_ereal: "\<bar>x0 :: ereal\<bar> \<noteq> \<infinity> \<Longrightarrow> continuous (at x0) real_of_ereal" unfolding continuous_at by (rule lim_real_of_ereal) (simp add: ereal_real)lemma nhds_ereal: "nhds (ereal r) = filtermap ereal (nhds r)" by (simp add: filtermap_nhds_open_map open_ereal continuous_at_of_ereal)lemma at_ereal: "at (ereal r) = filtermap ereal (at r)" by (simp add: filter_eq_iff eventually_at_filter nhds_ereal eventually_filtermap)lemma at_left_ereal: "at_left (ereal r) = filtermap ereal (at_left r)" by (simp add: filter_eq_iff eventually_at_filter nhds_ereal eventually_filtermap)lemma at_right_ereal: "at_right (ereal r) = filtermap ereal (at_right r)" by (simp add: filter_eq_iff eventually_at_filter nhds_ereal eventually_filtermap)lemma shows at_left_PInf: "at_left \<infinity> = filtermap ereal at_top" and at_right_MInf: "at_right (-\<infinity>) = filtermap ereal at_bot" unfolding filter_eq_iff eventually_filtermap eventually_at_top_dense eventually_at_bot_dense eventually_at_left[OF ereal_less(5)] eventually_at_right[OF ereal_less(6)] by (auto simp add: ereal_all_split ereal_ex_split)lemma ereal_tendsto_simps1: "((f \<circ> real_of_ereal) \<longlongrightarrow> y) (at_left (ereal x)) \<longleftrightarrow> (f \<longlongrightarrow> y) (at_left x)" "((f \<circ> real_of_ereal) \<longlongrightarrow> y) (at_right (ereal x)) \<longleftrightarrow> (f \<longlongrightarrow> y) (at_right x)" "((f \<circ> real_of_ereal) \<longlongrightarrow> y) (at_left (\<infinity>::ereal)) \<longleftrightarrow> (f \<longlongrightarrow> y) at_top" "((f \<circ> real_of_ereal) \<longlongrightarrow> y) (at_right (-\<infinity>::ereal)) \<longleftrightarrow> (f \<longlongrightarrow> y) at_bot" unfolding tendsto_compose_filtermap at_left_ereal at_right_ereal at_left_PInf at_right_MInf by (auto simp: filtermap_filtermap filtermap_ident)lemma ereal_tendsto_simps2: "((ereal \<circ> f) \<longlongrightarrow> ereal a) F \<longleftrightarrow> (f \<longlongrightarrow> a) F" "((ereal \<circ> f) \<longlongrightarrow> \<infinity>) F \<longleftrightarrow> (LIM x F. f x :> at_top)" "((ereal \<circ> f) \<longlongrightarrow> -\<infinity>) F \<longleftrightarrow> (LIM x F. f x :> at_bot)" unfolding tendsto_PInfty filterlim_at_top_dense tendsto_MInfty filterlim_at_bot_dense using lim_ereal by (simp_all add: comp_def)lemma inverse_infty_ereal_tendsto_0: "inverse \<midarrow>\<infinity>\<rightarrow> (0::ereal)"proof - have **: "((\<lambda>x. ereal (inverse x)) \<longlongrightarrow> ereal 0) at_infinity" by (intro tendsto_intros tendsto_inverse_0) show ?thesis by (simp add: at_infty_ereal_eq_at_top tendsto_compose_filtermap[symmetric] comp_def) (auto simp: eventually_at_top_linorder exI[of _ 1] zero_ereal_def at_top_le_at_infinity intro!: filterlim_mono_eventually[OF **])qedlemma inverse_ereal_tendsto_pos: fixes x :: ereal assumes "0 < x" shows "inverse \<midarrow>x\<rightarrow> inverse x"proof (cases x) case (real r) with \<open>0 < x\<close> have **: "(\<lambda>x. ereal (inverse x)) \<midarrow>r\<rightarrow> ereal (inverse r)" by (auto intro!: tendsto_inverse) from real \<open>0 < x\<close> show ?thesis by (auto simp: at_ereal tendsto_compose_filtermap[symmetric] eventually_at_filter intro!: Lim_transform_eventually[OF **] t1_space_nhds)qed (insert \<open>0 < x\<close>, auto intro!: inverse_infty_ereal_tendsto_0)lemma inverse_ereal_tendsto_at_right_0: "(inverse \<longlongrightarrow> \<infinity>) (at_right (0::ereal))" unfolding tendsto_compose_filtermap[symmetric] at_right_ereal zero_ereal_def by (subst filterlim_cong[OF refl refl, where g="\<lambda>x. ereal (inverse x)"]) (auto simp: eventually_at_filter tendsto_PInfty_eq_at_top filterlim_inverse_at_top_right)lemmas ereal_tendsto_simps = ereal_tendsto_simps1 ereal_tendsto_simps2lemma continuous_at_iff_ereal: fixes f :: "'a::t2_space \<Rightarrow> real" shows "continuous (at x0 within s) f \<longleftrightarrow> continuous (at x0 within s) (ereal \<circ> f)" unfolding continuous_within comp_def lim_ereal ..lemma continuous_on_iff_ereal: fixes f :: "'a::t2_space => real" assumes "open A" shows "continuous_on A f \<longleftrightarrow> continuous_on A (ereal \<circ> f)" unfolding continuous_on_def comp_def lim_ereal ..lemma continuous_on_real: "continuous_on (UNIV - {\<infinity>, -\<infinity>::ereal}) real_of_ereal" using continuous_at_of_ereal continuous_on_eq_continuous_at open_image_ereal by autolemma continuous_on_iff_real: fixes f :: "'a::t2_space \<Rightarrow> ereal" assumes *: "\<And>x. x \<in> A \<Longrightarrow> \<bar>f x\<bar> \<noteq> \<infinity>" shows "continuous_on A f \<longleftrightarrow> continuous_on A (real_of_ereal \<circ> f)"proof - have "f ` A \<subseteq> UNIV - {\<infinity>, -\<infinity>}" using assms by force then have *: "continuous_on (f ` A) real_of_ereal" using continuous_on_real by (simp add: continuous_on_subset) have **: "continuous_on ((real_of_ereal \<circ> f) ` A) ereal" by (intro continuous_on_ereal continuous_on_id) { assume "continuous_on A f" then have "continuous_on A (real_of_ereal \<circ> f)" apply (subst continuous_on_compose) using * apply auto done } moreover { assume "continuous_on A (real_of_ereal \<circ> f)" then have "continuous_on A (ereal \<circ> (real_of_ereal \<circ> f))" apply (subst continuous_on_compose) using ** apply auto done then have "continuous_on A f" apply (subst continuous_on_cong[of _ A _ "ereal \<circ> (real_of_ereal \<circ> f)"]) using assms ereal_real apply auto done } ultimately show ?thesis by autoqedlemma continuous_uminus_ereal [continuous_intros]: "continuous_on (A :: ereal set) uminus" unfolding continuous_on_def by (intro ballI tendsto_uminus_ereal[of "\<lambda>x. x::ereal"]) simplemma ereal_uminus_atMost [simp]: "uminus ` {..(a::ereal)} = {-a..}"proof (intro equalityI subsetI) fix x :: ereal assume "x \<in> {-a..}" hence "-(-x) \<in> uminus ` {..a}" by (intro imageI) (simp add: ereal_uminus_le_reorder) thus "x \<in> uminus ` {..a}" by simpqed autolemma continuous_on_inverse_ereal [continuous_intros]: "continuous_on {0::ereal ..} inverse" unfolding continuous_on_defproof clarsimp fix x :: ereal assume "0 \<le> x" moreover have "at 0 within {0 ..} = at_right (0::ereal)" by (auto simp: filter_eq_iff eventually_at_filter le_less) moreover have "at x within {0 ..} = at x" if "0 < x" using that by (intro at_within_nhd[of _ "{0<..}"]) auto ultimately show "(inverse \<longlongrightarrow> inverse x) (at x within {0..})" by (auto simp: le_less inverse_ereal_tendsto_at_right_0 inverse_ereal_tendsto_pos)qedlemma continuous_inverse_ereal_nonpos: "continuous_on ({..<0} :: ereal set) inverse"proof (subst continuous_on_cong[OF refl]) have "continuous_on {(0::ereal)<..} inverse" by (rule continuous_on_subset[OF continuous_on_inverse_ereal]) auto thus "continuous_on {..<(0::ereal)} (uminus \<circ> inverse \<circ> uminus)" by (intro continuous_intros) simp_allqed simplemma tendsto_inverse_ereal: assumes "(f \<longlongrightarrow> (c :: ereal)) F" assumes "eventually (\<lambda>x. f x \<ge> 0) F" shows "((\<lambda>x. inverse (f x)) \<longlongrightarrow> inverse c) F" by (cases "F = bot") (auto intro!: tendsto_lowerbound assms continuous_on_tendsto_compose[OF continuous_on_inverse_ereal])subsubsection \<open>liminf and limsup\<close>lemma Limsup_ereal_mult_right: assumes "F \<noteq> bot" "(c::real) \<ge> 0" shows "Limsup F (\<lambda>n. f n * ereal c) = Limsup F f * ereal c"proof (rule Limsup_compose_continuous_mono) from assms show "continuous_on UNIV (\<lambda>a. a * ereal c)" using tendsto_cmult_ereal[of "ereal c" "\<lambda>x. x" ] by (force simp: continuous_on_def mult_ac)qed (insert assms, auto simp: mono_def ereal_mult_right_mono)lemma Liminf_ereal_mult_right: assumes "F \<noteq> bot" "(c::real) \<ge> 0" shows "Liminf F (\<lambda>n. f n * ereal c) = Liminf F f * ereal c"proof (rule Liminf_compose_continuous_mono) from assms show "continuous_on UNIV (\<lambda>a. a * ereal c)" using tendsto_cmult_ereal[of "ereal c" "\<lambda>x. x" ] by (force simp: continuous_on_def mult_ac)qed (insert assms, auto simp: mono_def ereal_mult_right_mono)lemma Liminf_ereal_mult_left: assumes "F \<noteq> bot" "(c::real) \<ge> 0" shows "Liminf F (\<lambda>n. ereal c * f n) = ereal c * Liminf F f"using Liminf_ereal_mult_right[OF assms] by (subst (1 2) mult.commute)lemma Limsup_ereal_mult_left: assumes "F \<noteq> bot" "(c::real) \<ge> 0" shows "Limsup F (\<lambda>n. ereal c * f n) = ereal c * Limsup F f" using Limsup_ereal_mult_right[OF assms] by (subst (1 2) mult.commute)lemma limsup_ereal_mult_right: "(c::real) \<ge> 0 \<Longrightarrow> limsup (\<lambda>n. f n * ereal c) = limsup f * ereal c" by (rule Limsup_ereal_mult_right) simp_alllemma limsup_ereal_mult_left: "(c::real) \<ge> 0 \<Longrightarrow> limsup (\<lambda>n. ereal c * f n) = ereal c * limsup f" by (subst (1 2) mult.commute, rule limsup_ereal_mult_right) simp_alllemma Limsup_add_ereal_right: "F \<noteq> bot \<Longrightarrow> abs c \<noteq> \<infinity> \<Longrightarrow> Limsup F (\<lambda>n. g n + (c :: ereal)) = Limsup F g + c" by (rule Limsup_compose_continuous_mono) (auto simp: mono_def add_mono continuous_on_def)lemma Limsup_add_ereal_left: "F \<noteq> bot \<Longrightarrow> abs c \<noteq> \<infinity> \<Longrightarrow> Limsup F (\<lambda>n. (c :: ereal) + g n) = c + Limsup F g" by (subst (1 2) add.commute) (rule Limsup_add_ereal_right)lemma Liminf_add_ereal_right: "F \<noteq> bot \<Longrightarrow> abs c \<noteq> \<infinity> \<Longrightarrow> Liminf F (\<lambda>n. g n + (c :: ereal)) = Liminf F g + c" by (rule Liminf_compose_continuous_mono) (auto simp: mono_def add_mono continuous_on_def)lemma Liminf_add_ereal_left: "F \<noteq> bot \<Longrightarrow> abs c \<noteq> \<infinity> \<Longrightarrow> Liminf F (\<lambda>n. (c :: ereal) + g n) = c + Liminf F g" by (subst (1 2) add.commute) (rule Liminf_add_ereal_right)lemma assumes "F \<noteq> bot" assumes nonneg: "eventually (\<lambda>x. f x \<ge> (0::ereal)) F" shows Liminf_inverse_ereal: "Liminf F (\<lambda>x. inverse (f x)) = inverse (Limsup F f)" and Limsup_inverse_ereal: "Limsup F (\<lambda>x. inverse (f x)) = inverse (Liminf F f)"proof - define inv where [abs_def]: "inv x = (if x \<le> 0 then \<infinity> else inverse x)" for x :: ereal have "continuous_on ({..0} \<union> {0..}) inv" unfolding inv_def by (intro continuous_on_If) (auto intro!: continuous_intros) also have "{..0} \<union> {0..} = (UNIV :: ereal set)" by auto finally have cont: "continuous_on UNIV inv" . have antimono: "antimono inv" unfolding inv_def antimono_def by (auto intro!: ereal_inverse_antimono) have "Liminf F (\<lambda>x. inverse (f x)) = Liminf F (\<lambda>x. inv (f x))" using nonneg by (auto intro!: Liminf_eq elim!: eventually_mono simp: inv_def) also have "... = inv (Limsup F f)" by (simp add: assms(1) Liminf_compose_continuous_antimono[OF cont antimono]) also from assms have "Limsup F f \<ge> 0" by (intro le_Limsup) simp_all hence "inv (Limsup F f) = inverse (Limsup F f)" by (simp add: inv_def) finally show "Liminf F (\<lambda>x. inverse (f x)) = inverse (Limsup F f)" . have "Limsup F (\<lambda>x. inverse (f x)) = Limsup F (\<lambda>x. inv (f x))" using nonneg by (auto intro!: Limsup_eq elim!: eventually_mono simp: inv_def) also have "... = inv (Liminf F f)" by (simp add: assms(1) Limsup_compose_continuous_antimono[OF cont antimono]) also from assms have "Liminf F f \<ge> 0" by (intro Liminf_bounded) simp_all hence "inv (Liminf F f) = inverse (Liminf F f)" by (simp add: inv_def) finally show "Limsup F (\<lambda>x. inverse (f x)) = inverse (Liminf F f)" .qedlemma ereal_diff_le_mono_left: "\<lbrakk> x \<le> z; 0 \<le> y \<rbrakk> \<Longrightarrow> x - y \<le> (z :: ereal)"by(cases x y z rule: ereal3_cases) simp_alllemma neg_0_less_iff_less_erea [simp]: "0 < - a \<longleftrightarrow> (a :: ereal) < 0"by(cases a) simp_alllemma not_infty_ereal: "\<bar>x\<bar> \<noteq> \<infinity> \<longleftrightarrow> (\<exists>x'. x = ereal x')"by(cases x) simp_alllemma neq_PInf_trans: fixes x y :: ereal shows "\<lbrakk> y \<noteq> \<infinity>; x \<le> y \<rbrakk> \<Longrightarrow> x \<noteq> \<infinity>"by autolemma mult_2_ereal: "ereal 2 * x = x + x"by(cases x) simp_alllemma ereal_diff_le_self: "0 \<le> y \<Longrightarrow> x - y \<le> (x :: ereal)"by(cases x y rule: ereal2_cases) simp_alllemma ereal_le_add_self: "0 \<le> y \<Longrightarrow> x \<le> x + (y :: ereal)"by(cases x y rule: ereal2_cases) simp_alllemma ereal_le_add_self2: "0 \<le> y \<Longrightarrow> x \<le> y + (x :: ereal)"by(cases x y rule: ereal2_cases) simp_alllemma ereal_le_add_mono1: "\<lbrakk> x \<le> y; 0 \<le> (z :: ereal) \<rbrakk> \<Longrightarrow> x \<le> y + z"using add_mono by fastforcelemma ereal_le_add_mono2: "\<lbrakk> x \<le> z; 0 \<le> (y :: ereal) \<rbrakk> \<Longrightarrow> x \<le> y + z"using add_mono by fastforcelemma ereal_diff_nonpos: fixes a b :: ereal shows "\<lbrakk> a \<le> b; a = \<infinity> \<Longrightarrow> b \<noteq> \<infinity>; a = -\<infinity> \<Longrightarrow> b \<noteq> -\<infinity> \<rbrakk> \<Longrightarrow> a - b \<le> 0" by (cases rule: ereal2_cases[of a b]) autolemma minus_ereal_0 [simp]: "x - ereal 0 = x"by(simp flip: zero_ereal_def)lemma ereal_diff_eq_0_iff: fixes a b :: ereal shows "(\<bar>a\<bar> = \<infinity> \<Longrightarrow> \<bar>b\<bar> \<noteq> \<infinity>) \<Longrightarrow> a - b = 0 \<longleftrightarrow> a = b"by(cases a b rule: ereal2_cases) simp_alllemma SUP_ereal_eq_0_iff_nonneg: fixes f :: "_ \<Rightarrow> ereal" and A assumes nonneg: "\<forall>x\<in>A. f x \<ge> 0" and A:"A \<noteq> {}" shows "(SUP x\<in>A. f x) = 0 \<longleftrightarrow> (\<forall>x\<in>A. f x = 0)" (is "?lhs \<longleftrightarrow> ?rhs")proof(intro iffI ballI) fix x assume "?lhs" "x \<in> A" from \<open>x \<in> A\<close> have "f x \<le> (SUP x\<in>A. f x)" by(rule SUP_upper) with \<open>?lhs\<close> show "f x = 0" using nonneg \<open>x \<in> A\<close> by autoqed (simp add: A)lemma ereal_divide_le_posI: fixes x y z :: ereal shows "x > 0 \<Longrightarrow> z \<noteq> - \<infinity> \<Longrightarrow> z \<le> x * y \<Longrightarrow> z / x \<le> y"by (cases rule: ereal3_cases[of x y z])(auto simp: field_simps split: if_split_asm)lemma add_diff_eq_ereal: fixes x y z :: ereal shows "x + (y - z) = x + y - z"by(cases x y z rule: ereal3_cases) simp_alllemma ereal_diff_gr0: fixes a b :: ereal shows "a < b \<Longrightarrow> 0 < b - a" by (cases rule: ereal2_cases[of a b]) autolemma ereal_minus_minus: fixes x y z :: ereal shows "(\<bar>y\<bar> = \<infinity> \<Longrightarrow> \<bar>z\<bar> \<noteq> \<infinity>) \<Longrightarrow> x - (y - z) = x + z - y"by(cases x y z rule: ereal3_cases) simp_alllemma diff_add_eq_ereal: fixes a b c :: ereal shows "a - b + c = a + c - b"by(cases a b c rule: ereal3_cases) simp_alllemma diff_diff_commute_ereal: fixes x y z :: ereal shows "x - y - z = x - z - y"by(cases x y z rule: ereal3_cases) simp_alllemma ereal_diff_eq_MInfty_iff: fixes x y :: ereal shows "x - y = -\<infinity> \<longleftrightarrow> x = -\<infinity> \<and> y \<noteq> -\<infinity> \<or> y = \<infinity> \<and> \<bar>x\<bar> \<noteq> \<infinity>"by(cases x y rule: ereal2_cases) simp_alllemma ereal_diff_add_inverse: fixes x y :: ereal shows "\<bar>x\<bar> \<noteq> \<infinity> \<Longrightarrow> x + y - x = y"by(cases x y rule: ereal2_cases) simp_alllemma tendsto_diff_ereal: fixes x y :: ereal assumes x: "\<bar>x\<bar> \<noteq> \<infinity>" and y: "\<bar>y\<bar> \<noteq> \<infinity>" assumes f: "(f \<longlongrightarrow> x) F" and g: "(g \<longlongrightarrow> y) F" shows "((\<lambda>x. f x - g x) \<longlongrightarrow> x - y) F"proof - from x obtain r where x': "x = ereal r" by (cases x) auto with f have "((\<lambda>i. real_of_ereal (f i)) \<longlongrightarrow> r) F" by simp moreover from y obtain p where y': "y = ereal p" by (cases y) auto with g have "((\<lambda>i. real_of_ereal (g i)) \<longlongrightarrow> p) F" by simp ultimately have "((\<lambda>i. real_of_ereal (f i) - real_of_ereal (g i)) \<longlongrightarrow> r - p) F" by (rule tendsto_diff) moreover from eventually_finite[OF x f] eventually_finite[OF y g] have "eventually (\<lambda>x. f x - g x = ereal (real_of_ereal (f x) - real_of_ereal (g x))) F" by eventually_elim auto ultimately show ?thesis by (simp add: x' y' cong: filterlim_cong)qedlemma continuous_on_diff_ereal: "continuous_on A f \<Longrightarrow> continuous_on A g \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> \<bar>f x\<bar> \<noteq> \<infinity>) \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> \<bar>g x\<bar> \<noteq> \<infinity>) \<Longrightarrow> continuous_on A (\<lambda>z. f z - g z::ereal)" apply (auto simp: continuous_on_def) apply (intro tendsto_diff_ereal) apply metis+ donesubsubsection \<open>Tests for code generator\<close>text \<open>A small list of simple arithmetic expressions.\<close>value "- \<infinity> :: ereal"value "\<bar>-\<infinity>\<bar> :: ereal"value "4 + 5 / 4 - ereal 2 :: ereal"value "ereal 3 < \<infinity>"value "real_of_ereal (\<infinity>::ereal) = 0"end