(* Title: HOL/Library/Bourbaki_Witt_Fixpoint.thy
Author: Andreas Lochbihler, ETH Zurich
Follows G. Smolka, S. Schäfer and C. Doczkal: Transfinite Constructions in
Classical Type Theory. ITP 2015
*)
section \<open>The Bourbaki-Witt tower construction for transfinite iteration\<close>
theory Bourbaki_Witt_Fixpoint
imports While_Combinator
begin
lemma ChainsI [intro?]:
"(\<And>a b. \<lbrakk> a \<in> Y; b \<in> Y \<rbrakk> \<Longrightarrow> (a, b) \<in> r \<or> (b, a) \<in> r) \<Longrightarrow> Y \<in> Chains r"
unfolding Chains_def by blast
lemma in_Chains_subset: "\<lbrakk> M \<in> Chains r; M' \<subseteq> M \<rbrakk> \<Longrightarrow> M' \<in> Chains r"
by(auto simp add: Chains_def)
lemma in_ChainsD: "\<lbrakk> M \<in> Chains r; x \<in> M; y \<in> M \<rbrakk> \<Longrightarrow> (x, y) \<in> r \<or> (y, x) \<in> r"
unfolding Chains_def by fast
lemma Chains_FieldD: "\<lbrakk> M \<in> Chains r; x \<in> M \<rbrakk> \<Longrightarrow> x \<in> Field r"
by(auto simp add: Chains_def intro: FieldI1 FieldI2)
lemma in_Chains_conv_chain: "M \<in> Chains r \<longleftrightarrow> Complete_Partial_Order.chain (\<lambda>x y. (x, y) \<in> r) M"
by(simp add: Chains_def chain_def)
lemma partial_order_on_trans:
"\<lbrakk> partial_order_on A r; (x, y) \<in> r; (y, z) \<in> r \<rbrakk> \<Longrightarrow> (x, z) \<in> r"
by(auto simp add: order_on_defs dest: transD)
locale bourbaki_witt_fixpoint =
fixes lub :: "'a set \<Rightarrow> 'a"
and leq :: "('a \<times> 'a) set"
and f :: "'a \<Rightarrow> 'a"
assumes po: "Partial_order leq"
and lub_least: "\<lbrakk> M \<in> Chains leq; M \<noteq> {}; \<And>x. x \<in> M \<Longrightarrow> (x, z) \<in> leq \<rbrakk> \<Longrightarrow> (lub M, z) \<in> leq"
and lub_upper: "\<lbrakk> M \<in> Chains leq; x \<in> M \<rbrakk> \<Longrightarrow> (x, lub M) \<in> leq"
and lub_in_Field: "\<lbrakk> M \<in> Chains leq; M \<noteq> {} \<rbrakk> \<Longrightarrow> lub M \<in> Field leq"
and increasing: "\<And>x. x \<in> Field leq \<Longrightarrow> (x, f x) \<in> leq"
begin
lemma leq_trans: "\<lbrakk> (x, y) \<in> leq; (y, z) \<in> leq \<rbrakk> \<Longrightarrow> (x, z) \<in> leq"
by(rule partial_order_on_trans[OF po])
lemma leq_refl: "x \<in> Field leq \<Longrightarrow> (x, x) \<in> leq"
using po by(simp add: order_on_defs refl_on_def)
lemma leq_antisym: "\<lbrakk> (x, y) \<in> leq; (y, x) \<in> leq \<rbrakk> \<Longrightarrow> x = y"
using po by(simp add: order_on_defs antisym_def)
inductive_set iterates_above :: "'a \<Rightarrow> 'a set"
for a
where
base: "a \<in> iterates_above a"
| step: "x \<in> iterates_above a \<Longrightarrow> f x \<in> iterates_above a"
| Sup: "\<lbrakk> M \<in> Chains leq; M \<noteq> {}; \<And>x. x \<in> M \<Longrightarrow> x \<in> iterates_above a \<rbrakk> \<Longrightarrow> lub M \<in> iterates_above a"
definition fixp_above :: "'a \<Rightarrow> 'a"
where "fixp_above a = (if a \<in> Field leq then lub (iterates_above a) else a)"
lemma fixp_above_outside: "a \<notin> Field leq \<Longrightarrow> fixp_above a = a"
by(simp add: fixp_above_def)
lemma fixp_above_inside: "a \<in> Field leq \<Longrightarrow> fixp_above a = lub (iterates_above a)"
by(simp add: fixp_above_def)
context
notes leq_refl [intro!, simp]
and base [intro]
and step [intro]
and Sup [intro]
and leq_trans [trans]
begin
lemma iterates_above_le_f: "\<lbrakk> x \<in> iterates_above a; a \<in> Field leq \<rbrakk> \<Longrightarrow> (x, f x) \<in> leq"
by(induction x rule: iterates_above.induct)(blast intro: increasing FieldI2 lub_in_Field)+
lemma iterates_above_Field: "\<lbrakk> x \<in> iterates_above a; a \<in> Field leq \<rbrakk> \<Longrightarrow> x \<in> Field leq"
by(drule (1) iterates_above_le_f)(rule FieldI1)
lemma iterates_above_ge:
assumes y: "y \<in> iterates_above a"
and a: "a \<in> Field leq"
shows "(a, y) \<in> leq"
using y by(induction)(auto intro: a increasing iterates_above_le_f leq_trans leq_trans[OF _ lub_upper])
lemma iterates_above_lub:
assumes M: "M \<in> Chains leq"
and nempty: "M \<noteq> {}"
and upper: "\<And>y. y \<in> M \<Longrightarrow> \<exists>z \<in> M. (y, z) \<in> leq \<and> z \<in> iterates_above a"
shows "lub M \<in> iterates_above a"
proof -
let ?M = "M \<inter> iterates_above a"
from M have M': "?M \<in> Chains leq" by(rule in_Chains_subset)simp
have "?M \<noteq> {}" using nempty by(auto dest: upper)
with M' have "lub ?M \<in> iterates_above a" by(rule Sup) blast
also have "lub ?M = lub M" using nempty
by(intro leq_antisym)(blast intro!: lub_least[OF M] lub_least[OF M'] intro: lub_upper[OF M'] lub_upper[OF M] leq_trans dest: upper)+
finally show ?thesis .
qed
lemma iterates_above_successor:
assumes y: "y \<in> iterates_above a"
and a: "a \<in> Field leq"
shows "y = a \<or> y \<in> iterates_above (f a)"
using y
proof induction
case base thus ?case by simp
next
case (step x) thus ?case by auto
next
case (Sup M)
show ?case
proof(cases "\<exists>x. M \<subseteq> {x}")
case True
with \<open>M \<noteq> {}\<close> obtain y where M: "M = {y}" by auto
have "lub M = y"
by(rule leq_antisym)(auto intro!: lub_upper Sup lub_least ChainsI simp add: a M Sup.hyps(3)[of y, THEN iterates_above_Field] dest: iterates_above_Field)
with Sup.IH[of y] M show ?thesis by simp
next
case False
from Sup(1-2) have "lub M \<in> iterates_above (f a)"
proof(rule iterates_above_lub)
fix y
assume y: "y \<in> M"
from Sup.IH[OF this] show "\<exists>z\<in>M. (y, z) \<in> leq \<and> z \<in> iterates_above (f a)"
proof
assume "y = a"
from y False obtain z where z: "z \<in> M" and neq: "y \<noteq> z" by (metis insertI1 subsetI)
with Sup.IH[OF z] \<open>y = a\<close> Sup.hyps(3)[OF z]
show ?thesis by(auto dest: iterates_above_ge intro: a)
next
assume *: "y \<in> iterates_above (f a)"
with increasing[OF a] have "y \<in> Field leq"
by(auto dest!: iterates_above_Field intro: FieldI2)
with * show ?thesis using y by auto
qed
qed
thus ?thesis by simp
qed
qed
lemma iterates_above_Sup_aux:
assumes M: "M \<in> Chains leq" "M \<noteq> {}"
and M': "M' \<in> Chains leq" "M' \<noteq> {}"
and comp: "\<And>x. x \<in> M \<Longrightarrow> x \<in> iterates_above (lub M') \<or> lub M' \<in> iterates_above x"
shows "(lub M, lub M') \<in> leq \<or> lub M \<in> iterates_above (lub M')"
proof(cases "\<exists>x \<in> M. x \<in> iterates_above (lub M')")
case True
then obtain x where x: "x \<in> M" "x \<in> iterates_above (lub M')" by blast
have lub_M': "lub M' \<in> Field leq" using M' by(rule lub_in_Field)
have "lub M \<in> iterates_above (lub M')" using M
proof(rule iterates_above_lub)
fix y
assume y: "y \<in> M"
from comp[OF y] show "\<exists>z\<in>M. (y, z) \<in> leq \<and> z \<in> iterates_above (lub M')"
proof
assume "y \<in> iterates_above (lub M')"
from this iterates_above_Field[OF this] y lub_M' show ?thesis by blast
next
assume "lub M' \<in> iterates_above y"
hence "(y, lub M') \<in> leq" using Chains_FieldD[OF M(1) y] by(rule iterates_above_ge)
also have "(lub M', x) \<in> leq" using x(2) lub_M' by(rule iterates_above_ge)
finally show ?thesis using x by blast
qed
qed
thus ?thesis ..
next
case False
have "(lub M, lub M') \<in> leq" using M
proof(rule lub_least)
fix x
assume x: "x \<in> M"
from comp[OF x] x False have "lub M' \<in> iterates_above x" by auto
moreover from M(1) x have "x \<in> Field leq" by(rule Chains_FieldD)
ultimately show "(x, lub M') \<in> leq" by(rule iterates_above_ge)
qed
thus ?thesis ..
qed
lemma iterates_above_triangle:
assumes x: "x \<in> iterates_above a"
and y: "y \<in> iterates_above a"
and a: "a \<in> Field leq"
shows "x \<in> iterates_above y \<or> y \<in> iterates_above x"
using x y
proof(induction arbitrary: y)
case base then show ?case by simp
next
case (step x) thus ?case using a
by(auto dest: iterates_above_successor intro: iterates_above_Field)
next
case x: (Sup M)
hence lub: "lub M \<in> iterates_above a" by blast
from \<open>y \<in> iterates_above a\<close> show ?case
proof(induction)
case base show ?case using lub by simp
next
case (step y) thus ?case using a
by(auto dest: iterates_above_successor intro: iterates_above_Field)
next
case y: (Sup M')
hence lub': "lub M' \<in> iterates_above a" by blast
have *: "x \<in> iterates_above (lub M') \<or> lub M' \<in> iterates_above x" if "x \<in> M" for x
using that lub' by(rule x.IH)
with x(1-2) y(1-2) have "(lub M, lub M') \<in> leq \<or> lub M \<in> iterates_above (lub M')"
by(rule iterates_above_Sup_aux)
moreover from y(1-2) x(1-2) have "(lub M', lub M) \<in> leq \<or> lub M' \<in> iterates_above (lub M)"
by(rule iterates_above_Sup_aux)(blast dest: y.IH)
ultimately show ?case by(auto 4 3 dest: leq_antisym)
qed
qed
lemma chain_iterates_above:
assumes a: "a \<in> Field leq"
shows "iterates_above a \<in> Chains leq" (is "?C \<in> _")
proof (rule ChainsI)
fix x y
assume "x \<in> ?C" "y \<in> ?C"
hence "x \<in> iterates_above y \<or> y \<in> iterates_above x" using a by(rule iterates_above_triangle)
moreover from \<open>x \<in> ?C\<close> a have "x \<in> Field leq" by(rule iterates_above_Field)
moreover from \<open>y \<in> ?C\<close> a have "y \<in> Field leq" by(rule iterates_above_Field)
ultimately show "(x, y) \<in> leq \<or> (y, x) \<in> leq" by(auto dest: iterates_above_ge)
qed
lemma fixp_iterates_above: "fixp_above a \<in> iterates_above a"
by(auto intro: chain_iterates_above simp add: fixp_above_def)
lemma fixp_above_Field: "a \<in> Field leq \<Longrightarrow> fixp_above a \<in> Field leq"
using fixp_iterates_above by(rule iterates_above_Field)
lemma fixp_above_unfold:
assumes a: "a \<in> Field leq"
shows "fixp_above a = f (fixp_above a)" (is "?a = f ?a")
proof(rule leq_antisym)
show "(?a, f ?a) \<in> leq" using fixp_above_Field[OF a] by(rule increasing)
have "f ?a \<in> iterates_above a" using fixp_iterates_above by(rule iterates_above.step)
with chain_iterates_above[OF a] show "(f ?a, ?a) \<in> leq"
by(simp add: fixp_above_inside assms lub_upper)
qed
end
lemma fixp_above_induct [case_names adm base step]:
assumes adm: "ccpo.admissible lub (\<lambda>x y. (x, y) \<in> leq) P"
and base: "P a"
and step: "\<And>x. P x \<Longrightarrow> P (f x)"
shows "P (fixp_above a)"
proof(cases "a \<in> Field leq")
case True
from adm chain_iterates_above[OF True]
show ?thesis unfolding fixp_above_inside[OF True] in_Chains_conv_chain
proof(rule ccpo.admissibleD)
have "a \<in> iterates_above a" ..
then show "iterates_above a \<noteq> {}" by(auto)
show "P x" if "x \<in> iterates_above a" for x using that
by induction(auto intro: base step simp add: in_Chains_conv_chain dest: ccpo.admissibleD[OF adm])
qed
qed(simp add: fixp_above_outside base)
end
subsection \<open>Connect with the while combinator for executability on chain-finite lattices.\<close>
context bourbaki_witt_fixpoint begin
lemma in_Chains_finite: -- \<open>Translation from @{thm in_chain_finite}.\<close>
assumes "M \<in> Chains leq"
and "M \<noteq> {}"
and "finite M"
shows "lub M \<in> M"
using assms(3,1,2)
proof induction
case empty thus ?case by simp
next
case (insert x M)
note chain = \<open>insert x M \<in> Chains leq\<close>
show ?case
proof(cases "M = {}")
case True thus ?thesis
using chain in_ChainsD leq_antisym lub_least lub_upper by fastforce
next
case False
from chain have chain': "M \<in> Chains leq"
using in_Chains_subset subset_insertI by blast
hence "lub M \<in> M" using False by(rule insert.IH)
show ?thesis
proof(cases "(x, lub M) \<in> leq")
case True
have "(lub (insert x M), lub M) \<in> leq" using chain
by (rule lub_least) (auto simp: True intro: lub_upper[OF chain'])
with False have "lub (insert x M) = lub M"
using lub_upper[OF chain] lub_least[OF chain'] by (blast intro: leq_antisym)
with \<open>lub M \<in> M\<close> show ?thesis by simp
next
case False
with in_ChainsD[OF chain, of x "lub M"] \<open>lub M \<in> M\<close>
have "lub (insert x M) = x"
by - (rule leq_antisym, (blast intro: FieldI2 chain chain' insert.prems(2) leq_refl leq_trans lub_least lub_upper)+)
thus ?thesis by simp
qed
qed
qed
lemma fun_pow_iterates_above: "(f ^^ k) a \<in> iterates_above a"
using iterates_above.base iterates_above.step by (induct k) simp_all
lemma chfin_iterates_above_fun_pow:
assumes "x \<in> iterates_above a"
assumes "\<forall>M \<in> Chains leq. finite M"
shows "\<exists>j. x = (f ^^ j) a"
using assms(1)
proof induct
case base then show ?case by (simp add: exI[where x=0])
next
case (step x) then obtain j where "x = (f ^^ j) a" by blast
with step(1) show ?case by (simp add: exI[where x="Suc j"])
next
case (Sup M) with in_Chains_finite assms(2) show ?case by blast
qed
lemma Chain_finite_iterates_above_fun_pow_iff:
assumes "\<forall>M \<in> Chains leq. finite M"
shows "x \<in> iterates_above a \<longleftrightarrow> (\<exists>j. x = (f ^^ j) a)"
using chfin_iterates_above_fun_pow fun_pow_iterates_above assms by blast
lemma fixp_above_Kleene_iter_ex:
assumes "(\<forall>M \<in> Chains leq. finite M)"
obtains k where "fixp_above a = (f ^^ k) a"
using assms by atomize_elim (simp add: chfin_iterates_above_fun_pow fixp_iterates_above)
context fixes a assumes a: "a \<in> Field leq" begin
lemma funpow_Field_leq: "(f ^^ k) a \<in> Field leq"
using a by (induct k) (auto intro: increasing FieldI2)
lemma funpow_prefix: "j < k \<Longrightarrow> ((f ^^ j) a, (f ^^ k) a) \<in> leq"
proof(induct k)
case (Suc k)
with leq_trans[OF _ increasing[OF funpow_Field_leq]] funpow_Field_leq increasing a
show ?case by simp (metis less_antisym)
qed simp
lemma funpow_suffix: "(f ^^ Suc k) a = (f ^^ k) a \<Longrightarrow> ((f ^^ (j + k)) a, (f ^^ k) a) \<in> leq"
using funpow_Field_leq
by (induct j) (simp_all del: funpow.simps add: funpow_Suc_right funpow_add leq_refl)
lemma funpow_stability: "(f ^^ Suc k) a = (f ^^ k) a \<Longrightarrow> ((f ^^ j) a, (f ^^ k) a) \<in> leq"
using funpow_prefix funpow_suffix[where j="j - k" and k=k] by (cases "j < k") simp_all
lemma funpow_in_Chains: "{(f ^^ k) a |k. True} \<in> Chains leq"
using chain_iterates_above[OF a] fun_pow_iterates_above
by (blast intro: ChainsI dest: in_ChainsD)
lemma fixp_above_Kleene_iter:
assumes "\<forall>M \<in> Chains leq. finite M" (* convenient but surely not necessary *)
assumes "(f ^^ Suc k) a = (f ^^ k) a"
shows "fixp_above a = (f ^^ k) a"
proof(rule leq_antisym)
show "(fixp_above a, (f ^^ k) a) \<in> leq" using assms a
by(auto simp add: fixp_above_def chain_iterates_above Chain_finite_iterates_above_fun_pow_iff funpow_stability[OF assms(2)] intro!: lub_least intro: iterates_above.base)
show "((f ^^ k) a, fixp_above a) \<in> leq" using a
by(auto simp add: fixp_above_def chain_iterates_above fun_pow_iterates_above intro!: lub_upper)
qed
context assumes chfin: "\<forall>M \<in> Chains leq. finite M" begin
lemma Chain_finite_wf: "wf {(f ((f ^^ k) a), (f ^^ k) a) |k. f ((f ^^ k) a) \<noteq> (f ^^ k) a}"
apply(rule wf_measure[where f="\<lambda>b. card {(f ^^ j) a |j. (b, (f ^^ j) a) \<in> leq}", THEN wf_subset])
apply(auto simp: set_eq_iff intro!: psubset_card_mono[OF finite_subset[OF _ bspec[OF chfin funpow_in_Chains]]])
apply(metis funpow_Field_leq increasing leq_antisym leq_trans leq_refl)+
done
lemma while_option_finite_increasing: "\<exists>P. while_option (\<lambda>A. f A \<noteq> A) f a = Some P"
by(rule wf_rel_while_option_Some[OF Chain_finite_wf, where P="\<lambda>A. (\<exists>k. A = (f ^^ k) a) \<and> (A, f A) \<in> leq" and s="a"])
(auto simp: a increasing chfin FieldI2 chfin_iterates_above_fun_pow fun_pow_iterates_above iterates_above.step intro: exI[where x=0])
lemma fixp_above_the_while_option: "fixp_above a = the (while_option (\<lambda>A. f A \<noteq> A) f a)"
proof -
obtain P where "while_option (\<lambda>A. f A \<noteq> A) f a = Some P"
using while_option_finite_increasing by blast
with while_option_stop2[OF this] fixp_above_Kleene_iter[OF chfin]
show ?thesis by fastforce
qed
lemma fixp_above_conv_while: "fixp_above a = while (\<lambda>A. f A \<noteq> A) f a"
unfolding while_def by (rule fixp_above_the_while_option)
end
end
end
lemma bourbaki_witt_fixpoint_complete_latticeI:
fixes f :: "'a::complete_lattice \<Rightarrow> 'a"
assumes "\<And>x. x \<le> f x"
shows "bourbaki_witt_fixpoint Sup {(x, y). x \<le> y} f"
by unfold_locales (auto simp: assms Sup_upper order_on_defs Field_def intro: refl_onI transI antisymI Sup_least)
end