src/Pure/thm_deps.ML
author wenzelm
Thu, 05 Sep 2024 17:39:45 +0200
changeset 80809 4a64fc4d1cde
parent 80590 505f97165f52
child 81531 b224e42b66f5
permissions -rw-r--r--
clarified signature: type ML_Pretty.pretty coincides with PolyML.pretty;

(*  Title:      Pure/thm_deps.ML
    Author:     Stefan Berghofer, TU Muenchen
    Author:     Makarius

Dependencies of theorems wrt. internal derivation.
*)

signature THM_DEPS =
sig
  val all_oracles: thm list -> Proofterm.oracle list
  val has_skip_proof: thm list -> bool
  val pretty_thm_oracles: Proof.context -> thm list -> Pretty.T
  val thm_deps: theory -> thm list -> (Proofterm.thm_id * Thm_Name.T) list
  val pretty_thm_deps: theory -> thm list -> Pretty.T
  val unused_thms_cmd: theory list * theory list -> (Thm_Name.T * thm) list
end;

structure Thm_Deps: THM_DEPS =
struct

(* oracles *)

fun all_oracles thms =
  let
    fun collect (PBody {oracles, thms, ...}) =
      (if null oracles then I else apfst (cons oracles)) #>
      (tap Proofterm.join_thms thms |> fold (fn (i, thm_node) => fn (res, seen) =>
        if Intset.member seen i then (res, seen)
        else
          let val body = Future.join (Proofterm.thm_node_body thm_node)
          in collect body (res, Intset.insert i seen) end));
    val bodies = map Thm.proof_body_of thms;
  in fold collect bodies ([], Intset.empty) |> #1 |> Proofterm.unions_oracles end;

fun has_skip_proof thms =
  all_oracles thms |> exists (fn ((name, _), _) => name = \<^oracle_name>\<open>skip_proof\<close>);

fun pretty_thm_oracles ctxt thms =
  let
    val thy = Proof_Context.theory_of ctxt;
    fun prt_ora (name, pos) = Thm.pretty_oracle ctxt name :: Pretty.here pos;
    fun prt_oracle (ora, NONE) = prt_ora ora
      | prt_oracle (ora, SOME prop) =
          prt_ora ora @ [Pretty.str ":", Pretty.brk 1, Syntax.pretty_term_global thy prop];
    val oracles =
      (case try all_oracles thms of
        SOME oracles => oracles
      | NONE => error "Malformed proofs")
  in Pretty.big_list "oracles:" (map (Pretty.item o prt_oracle) oracles) end;


(* thm_deps *)

fun thm_deps thy =
  let
    val lookup = Global_Theory.lookup_thm_id thy;
    fun deps (i, thm_node) res =
      if Inttab.defined res i then res
      else
        let val thm_id = Proofterm.thm_id (i, thm_node) in
          (case lookup thm_id of
            SOME (thm_name, _) =>
              Inttab.update (i, SOME (thm_id, thm_name)) res
          | NONE =>
              Inttab.update (i, NONE) res
              |> fold deps (Proofterm.thm_node_thms thm_node))
        end;
  in
    fn thms =>
      (Inttab.build (fold (fold deps o Thm.thm_deps o Thm.transfer thy) thms), [])
      |-> Inttab.fold_rev (fn (_, SOME entry) => cons entry | _ => I)
  end;

fun pretty_thm_deps thy thms =
  let
    val facts = Global_Theory.facts_of thy;
    val extern_fact = Name_Space.extern_generic (Context.Theory thy) (Facts.space_of facts);
    val deps =
      (case try (thm_deps thy) thms of
        SOME deps => deps
      | NONE => error "Malformed proofs");
    val items =
      deps
      |> map (fn (_, thm_name as (name, _)) => (extern_fact name, thm_name))
      |> sort_by #1
      |> map (fn (_, thm_name) => Pretty.item [Global_Theory.pretty_thm_name thy thm_name])
  in Pretty.big_list ("dependencies: " ^ string_of_int (length items)) items end;


(* unused_thms_cmd *)

fun unused_thms_cmd (base_thys, thys) =
  let
    fun add_fact transfer space (name, ths) =
      if exists (fn thy => Global_Theory.defined_fact thy name) base_thys then I
      else
        let val {concealed, group, ...} = Name_Space.the_entry space name in
          fold_rev (transfer #> (fn th =>
            let val a = Thm.derivation_name th
            in if Thm_Name.is_empty a then I else cons (a, (th, concealed, group)) end)) ths
        end;
    fun add_facts thy =
      let
        val transfer = Global_Theory.transfer_theories thy;
        val facts = Global_Theory.facts_of thy;
      in Facts.fold_static (add_fact transfer (Facts.space_of facts)) facts end;

    val new_thms =
      fold add_facts thys []
      |> sort_distinct (Thm_Name.ord o apply2 #1);

    val used =
      Proofterm.fold_body_thms
        (fn {thm_name = a, ...} => not (Thm_Name.is_empty a) ? Thm_Name.Set.insert a)
        (map Proofterm.strip_thm_body (Thm.proof_bodies_of (map (#1 o #2) new_thms)))
        Thm_Name.Set.empty;

    fun is_unused a = not (Thm_Name.Set.member used a);

    (*groups containing at least one used theorem*)
    val used_groups =
      Intset.build (new_thms |> fold (fn (a, (_, _, group)) =>
        if is_unused a orelse group = 0 then I else Intset.insert group));

    val (thms', _) = fold (fn (a, (th, concealed, group)) => fn q as (thms, seen_groups) =>
      if not concealed andalso
        (* FIXME replace by robust treatment of thm groups *)
        Thm.legacy_get_kind th = Thm.theoremK andalso is_unused a
      then
        (if group = 0 then ((a, th) :: thms, seen_groups)
         else if Intset.member used_groups group orelse Intset.member seen_groups group then q
         else ((a, th) :: thms, Intset.insert group seen_groups))
      else q) new_thms ([], Intset.empty);
  in rev thms' end;

end;