UNIV now a constant; UNION1, INTER1 now translations and no longer have
separate rules for themselves
(* Title: ZF/ex/fin.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
Finite powerset operator
could define cardinality?
prove X:Fin(A) ==> EX n:nat. EX f. f:bij(X,n)
card(0)=0
[| a~:b; b: Fin(A) |] ==> card(cons(a,b)) = succ(card(b))
b: Fin(A) ==> inj(b,b)<=surj(b,b)
Limit(i) ==> Fin(Vfrom(A,i)) <= Un j:i. Fin(Vfrom(A,j))
Fin(univ(A)) <= univ(A)
*)
structure Fin = Inductive_Fun
(val thy = Arith.thy addconsts [(["Fin"],"i=>i")]
val rec_doms = [("Fin","Pow(A)")]
val sintrs = ["0 : Fin(A)",
"[| a: A; b: Fin(A) |] ==> cons(a,b) : Fin(A)"]
val monos = []
val con_defs = []
val type_intrs = [empty_subsetI, cons_subsetI, PowI]
val type_elims = [make_elim PowD]);
store_theory "Fin" Fin.thy;
val [Fin_0I, Fin_consI] = Fin.intrs;
goalw Fin.thy Fin.defs "!!A B. A<=B ==> Fin(A) <= Fin(B)";
by (rtac lfp_mono 1);
by (REPEAT (rtac Fin.bnd_mono 1));
by (REPEAT (ares_tac (Pow_mono::basic_monos) 1));
val Fin_mono = result();
(* A : Fin(B) ==> A <= B *)
val FinD = Fin.dom_subset RS subsetD RS PowD;
(** Induction on finite sets **)
(*Discharging x~:y entails extra work*)
val major::prems = goal Fin.thy
"[| b: Fin(A); \
\ P(0); \
\ !!x y. [| x: A; y: Fin(A); x~:y; P(y) |] ==> P(cons(x,y)) \
\ |] ==> P(b)";
by (rtac (major RS Fin.induct) 1);
by (res_inst_tac [("Q","a:b")] (excluded_middle RS disjE) 2);
by (etac (cons_absorb RS ssubst) 3 THEN assume_tac 3); (*backtracking!*)
by (REPEAT (ares_tac prems 1));
val Fin_induct = result();
(** Simplification for Fin **)
val Fin_ss = arith_ss addsimps Fin.intrs;
(*The union of two finite sets is finite.*)
val major::prems = goal Fin.thy
"[| b: Fin(A); c: Fin(A) |] ==> b Un c : Fin(A)";
by (rtac (major RS Fin_induct) 1);
by (ALLGOALS (asm_simp_tac (Fin_ss addsimps (prems@[Un_0, Un_cons]))));
val Fin_UnI = result();
(*The union of a set of finite sets is finite.*)
val [major] = goal Fin.thy "C : Fin(Fin(A)) ==> Union(C) : Fin(A)";
by (rtac (major RS Fin_induct) 1);
by (ALLGOALS (asm_simp_tac (Fin_ss addsimps [Union_0, Union_cons, Fin_UnI])));
val Fin_UnionI = result();
(*Every subset of a finite set is finite.*)
goal Fin.thy "!!b A. b: Fin(A) ==> ALL z. z<=b --> z: Fin(A)";
by (etac Fin_induct 1);
by (simp_tac (Fin_ss addsimps [subset_empty_iff]) 1);
by (safe_tac (ZF_cs addSDs [subset_cons_iff RS iffD1]));
by (eres_inst_tac [("b","z")] (cons_Diff RS subst) 2);
by (ALLGOALS (asm_simp_tac Fin_ss));
val Fin_subset_lemma = result();
goal Fin.thy "!!c b A. [| c<=b; b: Fin(A) |] ==> c: Fin(A)";
by (REPEAT (ares_tac [Fin_subset_lemma RS spec RS mp] 1));
val Fin_subset = result();
val major::prems = goal Fin.thy
"[| c: Fin(A); b: Fin(A); \
\ P(b); \
\ !!x y. [| x: A; y: Fin(A); x:y; P(y) |] ==> P(y-{x}) \
\ |] ==> c<=b --> P(b-c)";
by (rtac (major RS Fin_induct) 1);
by (rtac (Diff_cons RS ssubst) 2);
by (ALLGOALS (asm_simp_tac (Fin_ss addsimps (prems@[Diff_0, cons_subset_iff,
Diff_subset RS Fin_subset]))));
val Fin_0_induct_lemma = result();
val prems = goal Fin.thy
"[| b: Fin(A); \
\ P(b); \
\ !!x y. [| x: A; y: Fin(A); x:y; P(y) |] ==> P(y-{x}) \
\ |] ==> P(0)";
by (rtac (Diff_cancel RS subst) 1);
by (rtac (Fin_0_induct_lemma RS mp) 1);
by (REPEAT (ares_tac (subset_refl::prems) 1));
val Fin_0_induct = result();