(* Title: HOL/Inductive.thy
ID: $Id$
Author: Markus Wenzel, TU Muenchen
*)
header {* Support for inductive sets and types *}
theory Inductive
imports FixedPoint Sum_Type Relation Record
uses
("Tools/inductive_package.ML")
("Tools/inductive_realizer.ML")
("Tools/inductive_codegen.ML")
("Tools/datatype_aux.ML")
("Tools/datatype_prop.ML")
("Tools/datatype_rep_proofs.ML")
("Tools/datatype_abs_proofs.ML")
("Tools/datatype_realizer.ML")
("Tools/datatype_package.ML")
("Tools/datatype_codegen.ML")
("Tools/recfun_codegen.ML")
("Tools/primrec_package.ML")
begin
subsection {* Inductive sets *}
text {* Inversion of injective functions. *}
constdefs
myinv :: "('a => 'b) => ('b => 'a)"
"myinv (f :: 'a => 'b) == \<lambda>y. THE x. f x = y"
lemma myinv_f_f: "inj f ==> myinv f (f x) = x"
proof -
assume "inj f"
hence "(THE x'. f x' = f x) = (THE x'. x' = x)"
by (simp only: inj_eq)
also have "... = x" by (rule the_eq_trivial)
finally show ?thesis by (unfold myinv_def)
qed
lemma f_myinv_f: "inj f ==> y \<in> range f ==> f (myinv f y) = y"
proof (unfold myinv_def)
assume inj: "inj f"
assume "y \<in> range f"
then obtain x where "y = f x" ..
hence x: "f x = y" ..
thus "f (THE x. f x = y) = y"
proof (rule theI)
fix x' assume "f x' = y"
with x have "f x' = f x" by simp
with inj show "x' = x" by (rule injD)
qed
qed
hide const myinv
text {* Package setup. *}
use "Tools/inductive_package.ML"
setup InductivePackage.setup
theorems basic_monos [mono] =
subset_refl imp_refl disj_mono conj_mono ex_mono all_mono if_def2
Collect_mono in_mono vimage_mono
imp_conv_disj not_not de_Morgan_disj de_Morgan_conj
not_all not_ex
Ball_def Bex_def
induct_rulify_fallback
subsection {* Inductive datatypes and primitive recursion *}
text {* Package setup. *}
use "Tools/recfun_codegen.ML"
setup RecfunCodegen.setup
use "Tools/datatype_aux.ML"
use "Tools/datatype_prop.ML"
use "Tools/datatype_rep_proofs.ML"
use "Tools/datatype_abs_proofs.ML"
use "Tools/datatype_realizer.ML"
use "Tools/datatype_package.ML"
setup DatatypePackage.setup
use "Tools/datatype_codegen.ML"
setup DatatypeCodegen.setup
use "Tools/inductive_realizer.ML"
setup InductiveRealizer.setup
use "Tools/inductive_codegen.ML"
setup InductiveCodegen.setup
use "Tools/primrec_package.ML"
end