src/LCF/LCF.thy
author schirmer
Fri, 17 Mar 2006 17:38:38 +0100
changeset 19284 4c86109423d5
parent 17249 e89fbfd778c1
child 19757 4a2a71c31968
permissions -rw-r--r--
added parser locale_expr_unless

(*  Title:      LCF/lcf.thy
    ID:         $Id$
    Author:     Tobias Nipkow
    Copyright   1992  University of Cambridge
*)

header {* LCF on top of First-Order Logic *}

theory LCF
imports FOL
uses ("LCF_lemmas.ML") ("pair.ML") ("fix.ML")
begin

text {* This theory is based on Lawrence Paulson's book Logic and Computation. *}

subsection {* Natural Deduction Rules for LCF *}

classes cpo < "term"
defaultsort cpo

typedecl tr
typedecl void
typedecl ('a,'b) "*"    (infixl 6)
typedecl ('a,'b) "+"    (infixl 5)

arities
  fun :: (cpo, cpo) cpo
  "*" :: (cpo, cpo) cpo
  "+" :: (cpo, cpo) cpo
  tr :: cpo
  void :: cpo

consts
 UU     :: "'a"
 TT     :: "tr"
 FF     :: "tr"
 FIX    :: "('a => 'a) => 'a"
 FST    :: "'a*'b => 'a"
 SND    :: "'a*'b => 'b"
 INL    :: "'a => 'a+'b"
 INR    :: "'b => 'a+'b"
 WHEN   :: "['a=>'c, 'b=>'c, 'a+'b] => 'c"
 adm    :: "('a => o) => o"
 VOID   :: "void"               ("'(')")
 PAIR   :: "['a,'b] => 'a*'b"   ("(1<_,/_>)" [0,0] 100)
 COND   :: "[tr,'a,'a] => 'a"   ("(_ =>/ (_ |/ _))" [60,60,60] 60)
 "<<"   :: "['a,'a] => o"       (infixl 50)

axioms
  (** DOMAIN THEORY **)

  eq_def:        "x=y == x << y & y << x"

  less_trans:    "[| x << y; y << z |] ==> x << z"

  less_ext:      "(ALL x. f(x) << g(x)) ==> f << g"

  mono:          "[| f << g; x << y |] ==> f(x) << g(y)"

  minimal:       "UU << x"

  FIX_eq:        "f(FIX(f)) = FIX(f)"

  (** TR **)

  tr_cases:      "p=UU | p=TT | p=FF"

  not_TT_less_FF: "~ TT << FF"
  not_FF_less_TT: "~ FF << TT"
  not_TT_less_UU: "~ TT << UU"
  not_FF_less_UU: "~ FF << UU"

  COND_UU:       "UU => x | y  =  UU"
  COND_TT:       "TT => x | y  =  x"
  COND_FF:       "FF => x | y  =  y"

  (** PAIRS **)

  surj_pairing:  "<FST(z),SND(z)> = z"

  FST:   "FST(<x,y>) = x"
  SND:   "SND(<x,y>) = y"

  (*** STRICT SUM ***)

  INL_DEF: "~x=UU ==> ~INL(x)=UU"
  INR_DEF: "~x=UU ==> ~INR(x)=UU"

  INL_STRICT: "INL(UU) = UU"
  INR_STRICT: "INR(UU) = UU"

  WHEN_UU:  "WHEN(f,g,UU) = UU"
  WHEN_INL: "~x=UU ==> WHEN(f,g,INL(x)) = f(x)"
  WHEN_INR: "~x=UU ==> WHEN(f,g,INR(x)) = g(x)"

  SUM_EXHAUSTION:
    "z = UU | (EX x. ~x=UU & z = INL(x)) | (EX y. ~y=UU & z = INR(y))"

  (** VOID **)

  void_cases:    "(x::void) = UU"

  (** INDUCTION **)

  induct:        "[| adm(P); P(UU); ALL x. P(x) --> P(f(x)) |] ==> P(FIX(f))"

  (** Admissibility / Chain Completeness **)
  (* All rules can be found on pages 199--200 of Larry's LCF book.
     Note that "easiness" of types is not taken into account
     because it cannot be expressed schematically; flatness could be. *)

  adm_less:      "adm(%x. t(x) << u(x))"
  adm_not_less:  "adm(%x.~ t(x) << u)"
  adm_not_free:  "adm(%x. A)"
  adm_subst:     "adm(P) ==> adm(%x. P(t(x)))"
  adm_conj:      "[| adm(P); adm(Q) |] ==> adm(%x. P(x)&Q(x))"
  adm_disj:      "[| adm(P); adm(Q) |] ==> adm(%x. P(x)|Q(x))"
  adm_imp:       "[| adm(%x.~P(x)); adm(Q) |] ==> adm(%x. P(x)-->Q(x))"
  adm_all:       "(!!y. adm(P(y))) ==> adm(%x. ALL y. P(y,x))"

ML {* use_legacy_bindings (the_context ()) *}

use "LCF_lemmas.ML"


subsection {* Ordered pairs and products *}

use "pair.ML"


subsection {* Fixedpoint theory *}

use "fix.ML"

end