(* Title: Pure/logic.ML Author: Lawrence C Paulson, Cambridge University Computer Laboratory Author: MakariusAbstract syntax operations of the Pure meta-logic.*)signature LOGIC =sig val all_const: typ -> term val all: term -> term -> term val dependent_all_name: string * term -> term -> term val is_all: term -> bool val dest_all: term -> (string * typ) * term val list_all: (string * typ) list * term -> term val all_constraint: (string -> typ option) -> string * string -> term -> term val dependent_all_constraint: (string -> typ option) -> string * string -> term -> term val mk_equals: term * term -> term val dest_equals: term -> term * term val implies: term val mk_implies: term * term -> term val dest_implies: term -> term * term val list_implies: term list * term -> term val strip_imp_prems: term -> term list val strip_imp_concl: term -> term val strip_prems: int * term list * term -> term list * term val count_prems: term -> int val nth_prem: int * term -> term val close_term: (string * term) list -> term -> term val close_prop: (string * term) list -> term list -> term -> term val close_prop_constraint: (string -> typ option) -> (string * string) list -> term list -> term -> term val true_prop: term val conjunction: term val mk_conjunction: term * term -> term val mk_conjunction_list: term list -> term val mk_conjunction_balanced: term list -> term val dest_conjunction: term -> term * term val dest_conjunction_list: term -> term list val dest_conjunction_balanced: int -> term -> term list val dest_conjunctions: term -> term list val strip_horn: term -> term list * term val mk_type: typ -> term val dest_type: term -> typ val type_map: (term -> term) -> typ -> typ val const_of_class: class -> string val class_of_const: string -> class val mk_of_class: typ * class -> term val dest_of_class: term -> typ * class val mk_of_sort: typ * sort -> term list val name_classrel: string * string -> string val mk_classrel: class * class -> term val dest_classrel: term -> class * class val name_arities: arity -> string list val name_arity: string * sort list * class -> string val mk_arities: arity -> term list val mk_arity: string * sort list * class -> term val dest_arity: term -> string * sort list * class val dummy_tfree: sort -> typ type unconstrain_context = {present_map: (typ * typ) list, constraints_map: (sort * typ) list, atyp_map: typ -> typ, map_atyps: typ -> typ, constraints: ((typ * class) * term) list, outer_constraints: (typ * class) list}; val unconstrainT: sort list -> term -> unconstrain_context * term val protectC: term val protect: term -> term val unprotect: term -> term val mk_term: term -> term val dest_term: term -> term val occs: term * term -> bool val close_form: term -> term val combound: term * int * int -> term val rlist_abs: (string * typ) list * term -> term val incr_tvar_same: int -> typ Same.operation val incr_tvar: int -> typ -> typ val incr_indexes_same: string list * typ list * int -> term Same.operation val incr_indexes: string list * typ list * int -> term -> term val lift_abs: int -> term -> term -> term val lift_all: int -> term -> term -> term val strip_assums_hyp: term -> term list val strip_assums_concl: term -> term val strip_params: term -> (string * typ) list val has_meta_prems: term -> bool val flatten_params: int -> term -> term val list_rename_params: string list -> term -> term val assum_pairs: int * term -> (term * term) list val assum_problems: int * term -> (term -> term) * term list * term val bad_schematic: indexname -> string val bad_fixed: string -> string val varifyT_global: typ -> typ val unvarifyT_global: typ -> typ val varify_types_global: term -> term val unvarify_types_global: term -> term val varify_global: term -> term val unvarify_global: term -> term val get_goal: term -> int -> term val goal_params: term -> int -> term * term list val prems_of_goal: term -> int -> term list val concl_of_goal: term -> int -> termend;structure Logic : LOGIC =struct(*** Abstract syntax operations on the meta-connectives ***)(** all **)fun all_const T = Const ("Pure.all", (T --> propT) --> propT);fun all v t = all_const (Term.fastype_of v) $ lambda v t;fun dependent_all_name (x, v) t = let val x' = if x = "" then Term.term_name v else x; val T = Term.fastype_of v; val t' = Term.abstract_over (v, t); in if Term.is_dependent t' then all_const T $ Abs (x', T, t') else t end;fun is_all (Const ("Pure.all", _) $ Abs _) = true | is_all _ = false;fun dest_all (Const ("Pure.all", _) $ Abs (abs as (_, T, _))) = let val (x, b) = Term.dest_abs abs (*potentially slow*) in ((x, T), b) end | dest_all t = raise TERM ("dest_all", [t]);fun list_all ([], t) = t | list_all ((a, T) :: vars, t) = all_const T $ Abs (a, T, list_all (vars, t));(* operations before type-inference *)localfun abs_body default_type z tm = let fun abs lev (Abs (x, T, b)) = Abs (x, T, abs (lev + 1) b) | abs lev (t $ u) = abs lev t $ abs lev u | abs lev (a as Free (x, T)) = if x = z then Type.constraint (the_default dummyT (default_type x)) (Type.constraint T (Bound lev)) else a | abs _ a = a; in abs 0 (Term.incr_boundvars 1 tm) end;infun all_constraint default_type (y, z) t = all_const dummyT $ Abs (y, dummyT, abs_body default_type z t);fun dependent_all_constraint default_type (y, z) t = let val t' = abs_body default_type z t in if Term.is_dependent t' then all_const dummyT $ Abs (y, dummyT, t') else t end;end;(** equality **)fun mk_equals (t, u) = let val T = Term.fastype_of t in Const ("Pure.eq", T --> T --> propT) $ t $ u end;fun dest_equals (Const ("Pure.eq", _) $ t $ u) = (t, u) | dest_equals t = raise TERM ("dest_equals", [t]);(** implies **)val implies = Const ("Pure.imp", propT --> propT --> propT);fun mk_implies (A, B) = implies $ A $ B;fun dest_implies (Const ("Pure.imp", _) $ A $ B) = (A, B) | dest_implies A = raise TERM ("dest_implies", [A]);(** nested implications **)(* [A1,...,An], B goes to A1\<Longrightarrow>...An\<Longrightarrow>B *)fun list_implies ([], B) = B | list_implies (A::As, B) = implies $ A $ list_implies(As,B);(* A1\<Longrightarrow>...An\<Longrightarrow>B goes to [A1,...,An], where B is not an implication *)fun strip_imp_prems (Const("Pure.imp", _) $ A $ B) = A :: strip_imp_prems B | strip_imp_prems _ = [];(* A1\<Longrightarrow>...An\<Longrightarrow>B goes to B, where B is not an implication *)fun strip_imp_concl (Const("Pure.imp", _) $ A $ B) = strip_imp_concl B | strip_imp_concl A = A : term;(*Strip and return premises: (i, [], A1\<Longrightarrow>...Ai\<Longrightarrow>B) goes to ([Ai, A(i-1),...,A1] , B) (REVERSED) if i<0 or else i too big then raises TERM*)fun strip_prems (0, As, B) = (As, B) | strip_prems (i, As, Const("Pure.imp", _) $ A $ B) = strip_prems (i-1, A::As, B) | strip_prems (_, As, A) = raise TERM("strip_prems", A::As);(*Count premises -- quicker than (length o strip_prems) *)fun count_prems (Const ("Pure.imp", _) $ _ $ B) = 1 + count_prems B | count_prems _ = 0;(*Select Ai from A1\<Longrightarrow>...Ai\<Longrightarrow>B*)fun nth_prem (1, Const ("Pure.imp", _) $ A $ _) = A | nth_prem (i, Const ("Pure.imp", _) $ _ $ B) = nth_prem (i - 1, B) | nth_prem (_, A) = raise TERM ("nth_prem", [A]);(*strip a proof state (Horn clause): B1 \<Longrightarrow> ... Bn \<Longrightarrow> C goes to ([B1, ..., Bn], C) *)fun strip_horn A = (strip_imp_prems A, strip_imp_concl A);(* close -- omit vacuous quantifiers *)val close_term = fold_rev Term.dependent_lambda_name;fun close_prop xs As B = fold_rev dependent_all_name xs (list_implies (As, B));fun close_prop_constraint default_type xs As B = fold_rev (dependent_all_constraint default_type) xs (list_implies (As, B));(** conjunction **)val true_prop = all_const propT $ Abs ("dummy", propT, mk_implies (Bound 0, Bound 0));val conjunction = Const ("Pure.conjunction", propT --> propT --> propT);(*A &&& B*)fun mk_conjunction (A, B) = conjunction $ A $ B;(*A &&& B &&& C -- improper*)fun mk_conjunction_list [] = true_prop | mk_conjunction_list ts = foldr1 mk_conjunction ts;(*(A &&& B) &&& (C &&& D) -- balanced*)fun mk_conjunction_balanced [] = true_prop | mk_conjunction_balanced ts = Balanced_Tree.make mk_conjunction ts;(*A &&& B*)fun dest_conjunction (Const ("Pure.conjunction", _) $ A $ B) = (A, B) | dest_conjunction t = raise TERM ("dest_conjunction", [t]);(*A &&& B &&& C -- improper*)fun dest_conjunction_list t = (case try dest_conjunction t of NONE => [t] | SOME (A, B) => A :: dest_conjunction_list B);(*(A &&& B) &&& (C &&& D) -- balanced*)fun dest_conjunction_balanced 0 _ = [] | dest_conjunction_balanced n t = Balanced_Tree.dest dest_conjunction n t;(*((A &&& B) &&& C) &&& D &&& E -- flat*)fun dest_conjunctions t = (case try dest_conjunction t of NONE => [t] | SOME (A, B) => dest_conjunctions A @ dest_conjunctions B);(** types as terms **)fun mk_type ty = Const ("Pure.type", Term.itselfT ty);fun dest_type (Const ("Pure.type", Type ("itself", [ty]))) = ty | dest_type t = raise TERM ("dest_type", [t]);fun type_map f = dest_type o f o mk_type;(** type classes **)(* const names *)val classN = "_class";val const_of_class = suffix classN;fun class_of_const c = unsuffix classN c handle Fail _ => raise TERM ("class_of_const: bad name " ^ quote c, []);(* class/sort membership *)fun mk_of_class (ty, c) = Const (const_of_class c, Term.itselfT ty --> propT) $ mk_type ty;fun dest_of_class (Const (c_class, _) $ ty) = (dest_type ty, class_of_const c_class) | dest_of_class t = raise TERM ("dest_of_class", [t]);fun mk_of_sort (ty, S) = map (fn c => mk_of_class (ty, c)) S;(* class relations *)fun name_classrel (c1, c2) = Long_Name.base_name c1 ^ "_" ^ Long_Name.base_name c2;fun mk_classrel (c1, c2) = mk_of_class (Term.aT [c1], c2);fun dest_classrel tm = (case dest_of_class tm of (TVar (_, [c1]), c2) => (c1, c2) | _ => raise TERM ("dest_classrel", [tm]));(* type arities *)fun name_arities (t, _, S) = let val b = Long_Name.base_name t in S |> map (fn c => Long_Name.base_name c ^ "_" ^ b) end;fun name_arity (t, dom, c) = hd (name_arities (t, dom, [c]));fun mk_arities (t, Ss, S) = let val T = Type (t, ListPair.map TFree (Name.invent Name.context Name.aT (length Ss), Ss)) in map (fn c => mk_of_class (T, c)) S end;fun mk_arity (t, Ss, c) = the_single (mk_arities (t, Ss, [c]));fun dest_arity tm = let fun err () = raise TERM ("dest_arity", [tm]); val (ty, c) = dest_of_class tm; val (t, tvars) = (case ty of Type (t, tys) => (t, map dest_TVar tys handle TYPE _ => err ()) | _ => err ()); val Ss = if has_duplicates (eq_fst (op =)) tvars then err () else map snd tvars; in (t, Ss, c) end;(* internalized sort constraints *)fun dummy_tfree S = TFree ("'dummy", S);type unconstrain_context = {present_map: (typ * typ) list, constraints_map: (sort * typ) list, atyp_map: typ -> typ, map_atyps: typ -> typ, constraints: ((typ * class) * term) list, outer_constraints: (typ * class) list};fun unconstrainT shyps prop = let val present = rev ((fold_types o fold_atyps_sorts) (insert (eq_fst op =)) prop []); val extra = fold (Sorts.remove_sort o #2) present shyps; val n = length present; val (names1, names2) = Name.invent Name.context Name.aT (n + length extra) |> chop n; val present_map = map2 (fn (T, S) => fn a => (T, TVar ((a, 0), S))) present names1; val constraints_map = map2 (fn (_, S) => fn a => (S, TVar ((a, 0), S))) present names1 @ map2 (fn S => fn a => (S, TVar ((a, 0), S))) extra names2; fun atyp_map T = (case AList.lookup (op =) present_map T of SOME U => U | NONE => (case AList.lookup (op =) constraints_map (Type.sort_of_atyp T) of SOME U => U | NONE => raise TYPE ("Dangling type variable ", [T], [prop]))); val map_atyps = Term.map_atyps (Type.strip_sorts o atyp_map); val constraints = constraints_map |> maps (fn (_, T as TVar (ai, S)) => map (fn c => ((T, c), mk_of_class (TVar (ai, []), c))) S); val outer_constraints = maps (fn (T, S) => map (pair T) S) (present @ map (`dummy_tfree) extra); val ucontext = {present_map = present_map, constraints_map = constraints_map, atyp_map = atyp_map, map_atyps = map_atyps, constraints = constraints, outer_constraints = outer_constraints}; val prop' = prop |> Term.map_types map_atyps |> curry list_implies (map #2 constraints); in (ucontext, prop') end;(** protected propositions and embedded terms **)val protectC = Const ("Pure.prop", propT --> propT);fun protect t = protectC $ t;fun unprotect (Const ("Pure.prop", _) $ t) = t | unprotect t = raise TERM ("unprotect", [t]);fun mk_term t = Const ("Pure.term", Term.fastype_of t --> propT) $ t;fun dest_term (Const ("Pure.term", _) $ t) = t | dest_term t = raise TERM ("dest_term", [t]);(*** Low-level term operations ***)(*Does t occur in u? Or is alpha-convertible to u? The term t must contain no loose bound variables*)fun occs (t, u) = exists_subterm (fn s => t aconv s) u;(*Close up a formula over all free variables by quantification*)fun close_form A = fold (all o Free) (Term.add_frees A []) A;(*** Specialized operations for resolution... ***)(*computes t(Bound(n+k-1),...,Bound(n)) *)fun combound (t, n, k) = if k>0 then combound (t,n+1,k-1) $ (Bound n) else t;(* ([xn,...,x1], t) goes to \<lambda>x1 ... xn. t *)fun rlist_abs ([], body) = body | rlist_abs ((a,T)::pairs, body) = rlist_abs(pairs, Abs(a, T, body));fun incr_tvar_same 0 = Same.same | incr_tvar_same k = Term_Subst.map_atypsT_same (fn TVar ((a, i), S) => TVar ((a, i + k), S) | _ => raise Same.SAME);fun incr_tvar k T = incr_tvar_same k T handle Same.SAME => T;(*For all variables in the term, increment indexnames and lift over the Us result is ?Gidx(B.(lev+n-1),...,B.lev) where lev is abstraction level *)fun incr_indexes_same ([], [], 0) = Same.same | incr_indexes_same (fixed, Ts, k) = let val n = length Ts; val incrT = incr_tvar_same k; fun incr lev (Var ((x, i), T)) = combound (Var ((x, i + k), Ts ---> Same.commit incrT T), lev, n) | incr lev (Free (x, T)) = if member (op =) fixed x then combound (Free (x, Ts ---> Same.commit incrT T), lev, n) else Free (x, incrT T) | incr lev (Abs (x, T, body)) = (Abs (x, incrT T, incr (lev + 1) body handle Same.SAME => body) handle Same.SAME => Abs (x, T, incr (lev + 1) body)) | incr lev (t $ u) = (incr lev t $ (incr lev u handle Same.SAME => u) handle Same.SAME => t $ incr lev u) | incr _ (Const (c, T)) = Const (c, incrT T) | incr _ (Bound _) = raise Same.SAME; in incr 0 end;fun incr_indexes arg t = incr_indexes_same arg t handle Same.SAME => t;(* Lifting functions from subgoal and increment: lift_abs operates on terms lift_all operates on propositions *)fun lift_abs inc = let fun lift Ts (Const ("Pure.imp", _) $ _ $ B) t = lift Ts B t | lift Ts (Const ("Pure.all", _) $ Abs (a, T, B)) t = Abs (a, T, lift (T :: Ts) B t) | lift Ts _ t = incr_indexes ([], rev Ts, inc) t; in lift [] end;fun lift_all inc = let fun lift Ts ((c as Const ("Pure.imp", _)) $ A $ B) t = c $ A $ lift Ts B t | lift Ts ((c as Const ("Pure.all", _)) $ Abs (a, T, B)) t = c $ Abs (a, T, lift (T :: Ts) B t) | lift Ts _ t = incr_indexes ([], rev Ts, inc) t; in lift [] end;(*Strips assumptions in goal, yielding list of hypotheses. *)fun strip_assums_hyp B = let fun strip Hs (Const ("Pure.imp", _) $ H $ B) = strip (H :: Hs) B | strip Hs (Const ("Pure.all", _) $ Abs (a, T, t)) = strip (map (incr_boundvars 1) Hs) t | strip Hs B = rev Hs in strip [] B end;(*Strips assumptions in goal, yielding conclusion. *)fun strip_assums_concl (Const("Pure.imp", _) $ H $ B) = strip_assums_concl B | strip_assums_concl (Const("Pure.all", _) $ Abs (a, T, t)) = strip_assums_concl t | strip_assums_concl B = B;(*Make a list of all the parameters in a subgoal, even if nested*)fun strip_params (Const("Pure.imp", _) $ H $ B) = strip_params B | strip_params (Const("Pure.all", _) $ Abs (a, T, t)) = (a, T) :: strip_params t | strip_params B = [];(*test for nested meta connectives in prems*)val has_meta_prems = let fun is_meta (Const ("Pure.eq", _) $ _ $ _) = true | is_meta (Const ("Pure.imp", _) $ _ $ _) = true | is_meta (Const ("Pure.all", _) $ _) = true | is_meta _ = false; fun ex_meta (Const ("Pure.imp", _) $ A $ B) = is_meta A orelse ex_meta B | ex_meta (Const ("Pure.all", _) $ Abs (_, _, B)) = ex_meta B | ex_meta _ = false; in ex_meta end;(*Removes the parameters from a subgoal and renumber bvars in hypotheses, where j is the total number of parameters (precomputed) If n>0 then deletes assumption n. *)fun remove_params j n A = if j=0 andalso n<=0 then A (*nothing left to do...*) else case A of Const("Pure.imp", _) $ H $ B => if n=1 then (remove_params j (n-1) B) else implies $ (incr_boundvars j H) $ (remove_params j (n-1) B) | Const("Pure.all",_)$Abs(a,T,t) => remove_params (j-1) n t | _ => if n>0 then raise TERM("remove_params", [A]) else A;(*Move all parameters to the front of the subgoal, renaming them apart; if n>0 then deletes assumption n. *)fun flatten_params n A = let val params = strip_params A; val vars = ListPair.zip (Name.variant_list [] (map #1 params), map #2 params) in list_all (vars, remove_params (length vars) n A) end;(*Makes parameters in a goal have the names supplied by the list cs.*)fun list_rename_params cs (Const ("Pure.imp", _) $ A $ B) = implies $ A $ list_rename_params cs B | list_rename_params (c :: cs) ((a as Const ("Pure.all", _)) $ Abs (_, T, t)) = a $ Abs (c, T, list_rename_params cs t) | list_rename_params cs B = B;(*** Treatment of "assume", "erule", etc. ***)(*Strips assumptions in goal yielding HS = [Hn,...,H1], params = [xm,...,x1], and B, where x1...xm are the parameters. This version (21.1.2005) REQUIRES the the parameters to be flattened, but it allows erule to work on assumptions of the form \<And>x. phi. Any \<And> after the outermost string will be regarded as belonging to the conclusion, and left untouched. Used ONLY by assum_pairs. Unless nasms<0, it can terminate the recursion early; that allows erule to work on assumptions of the form P\<Longrightarrow>Q.*)fun strip_assums_imp (0, Hs, B) = (Hs, B) (*recursion terminated by nasms*) | strip_assums_imp (nasms, Hs, Const("Pure.imp", _) $ H $ B) = strip_assums_imp (nasms-1, H::Hs, B) | strip_assums_imp (_, Hs, B) = (Hs, B); (*recursion terminated by B*)(*Strips OUTER parameters only.*)fun strip_assums_all (params, Const("Pure.all",_)$Abs(a,T,t)) = strip_assums_all ((a,T)::params, t) | strip_assums_all (params, B) = (params, B);(*Produces disagreement pairs, one for each assumption proof, in order. A is the first premise of the lifted rule, and thus has the form H1 \<Longrightarrow> ... Hk \<Longrightarrow> B and the pairs are (H1,B),...,(Hk,B). nasms is the number of assumptions in the original subgoal, needed when B has the form B1 \<Longrightarrow> B2: it stops B1 from being taken as an assumption. *)fun assum_pairs(nasms,A) = let val (params, A') = strip_assums_all ([],A) val (Hs,B) = strip_assums_imp (nasms,[],A') fun abspar t = rlist_abs(params, t) val D = abspar B fun pairrev ([], pairs) = pairs | pairrev (H::Hs, pairs) = pairrev(Hs, (abspar H, D) :: pairs) in pairrev (Hs,[]) end;fun assum_problems (nasms, A) = let val (params, A') = strip_assums_all ([], A) val (Hs, B) = strip_assums_imp (nasms, [], A') fun abspar t = rlist_abs (params, t) in (abspar, rev Hs, B) end;(* global schematic variables *)fun bad_schematic xi = "Illegal schematic variable: " ^ quote (Term.string_of_vname xi);fun bad_fixed x = "Illegal fixed variable: " ^ quote x;fun varifyT_global_same ty = ty |> Term_Subst.map_atypsT_same (fn TFree (a, S) => TVar ((a, 0), S) | TVar (ai, _) => raise TYPE (bad_schematic ai, [ty], []));fun unvarifyT_global_same ty = ty |> Term_Subst.map_atypsT_same (fn TVar ((a, 0), S) => TFree (a, S) | TVar (ai, _) => raise TYPE (bad_schematic ai, [ty], []) | TFree (a, _) => raise TYPE (bad_fixed a, [ty], []));val varifyT_global = Same.commit varifyT_global_same;val unvarifyT_global = Same.commit unvarifyT_global_same;fun varify_types_global tm = tm |> Same.commit (Term_Subst.map_types_same varifyT_global_same) handle TYPE (msg, _, _) => raise TERM (msg, [tm]);fun unvarify_types_global tm = tm |> Same.commit (Term_Subst.map_types_same unvarifyT_global_same) handle TYPE (msg, _, _) => raise TERM (msg, [tm]);fun varify_global tm = tm |> Same.commit (Term_Subst.map_aterms_same (fn Free (x, T) => Var ((x, 0), T) | Var (xi, _) => raise TERM (bad_schematic xi, [tm]) | _ => raise Same.SAME)) |> varify_types_global;fun unvarify_global tm = tm |> Same.commit (Term_Subst.map_aterms_same (fn Var ((x, 0), T) => Free (x, T) | Var (xi, _) => raise TERM (bad_schematic xi, [tm]) | Free (x, _) => raise TERM (bad_fixed x, [tm]) | _ => raise Same.SAME)) |> unvarify_types_global;(* goal states *)fun get_goal st i = nth_prem (i, st) handle TERM _ => error ("Subgoal number " ^ string_of_int i ^ " out of range (a total of " ^ string_of_int (count_prems st) ^ " subgoals)");(*reverses parameters for substitution*)fun goal_params st i = let val gi = get_goal st i val rfrees = map Free (Term.rename_wrt_term gi (strip_params gi)) in (gi, rfrees) end;fun concl_of_goal st i = let val (gi, rfrees) = goal_params st i val B = strip_assums_concl gi in subst_bounds (rfrees, B) end;fun prems_of_goal st i = let val (gi, rfrees) = goal_params st i val As = strip_assums_hyp gi in map (fn A => subst_bounds (rfrees, A)) As end;end;