Converted to predicate notation.
(*  Title:      HOL/Library/ExecutableSet.thy
    ID:         $Id$
    Author:     Stefan Berghofer, TU Muenchen
*)
header {* Implementation of finite sets by lists *}
theory ExecutableSet
imports Main
begin
section {* Definitional rewrites *}
instance set :: (eq) eq ..
lemma [code target: Set]:
  "A = B \<longleftrightarrow> A \<subseteq> B \<and> B \<subseteq> A"
  by blast
lemma [code func]:
  "(A\<Colon>'a\<Colon>eq set) = B \<longleftrightarrow> A \<subseteq> B \<and> B \<subseteq> A"
  by blast
lemma [code func]:
  "(A\<Colon>'a\<Colon>eq set) \<subseteq> B \<longleftrightarrow> (\<forall>x\<in>A. x \<in> B)"
  unfolding subset_def ..
lemma [code func]:
  "(A\<Colon>'a\<Colon>eq set) \<subset> B \<longleftrightarrow> A \<subseteq> B \<and> A \<noteq> B"
  by blast
lemma [code]:
  "a \<in> A \<longleftrightarrow> (\<exists>x\<in>A. x = a)"
  unfolding bex_triv_one_point1 ..
definition
  filter_set :: "('a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set" where
  "filter_set P xs = {x\<in>xs. P x}"
lemmas [symmetric, code inline] = filter_set_def
section {* Operations on lists *}
subsection {* Basic definitions *}
definition
  flip :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'c" where
  "flip f a b = f b a"
definition
  member :: "'a list \<Rightarrow> 'a \<Rightarrow> bool" where
  "member xs x = (x \<in> set xs)"
definition
  insertl :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where
  "insertl x xs = (if member xs x then xs else x#xs)"
lemma
  [code target: List]: "member [] y = False"
  and [code target: List]: "member (x#xs) y = (y = x \<or> member xs y)"
unfolding member_def by (induct xs) simp_all
fun
  drop_first :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list" where
  "drop_first f [] = []"
  "drop_first f (x#xs) = (if f x then xs else x # drop_first f xs)"
declare drop_first.simps [code del]
declare drop_first.simps [code target: List]
declare remove1.simps [code del]
lemma [code target: List]:
  "remove1 x xs = (if member xs x then drop_first (\<lambda>y. y = x) xs else xs)"
proof (cases "member xs x")
  case False thus ?thesis unfolding member_def by (induct xs) auto
next
  case True
  have "remove1 x xs = drop_first (\<lambda>y. y = x) xs" by (induct xs) simp_all
  with True show ?thesis by simp
qed
lemma member_nil [simp]:
  "member [] = (\<lambda>x. False)"
proof
  fix x
  show "member [] x = False" unfolding member_def by simp
qed
lemma member_insertl [simp]:
  "x \<in> set (insertl x xs)"
  unfolding insertl_def member_def mem_iff by simp
lemma insertl_member [simp]:
  fixes xs x
  assumes member: "member xs x"
  shows "insertl x xs = xs"
  using member unfolding insertl_def by simp
lemma insertl_not_member [simp]:
  fixes xs x
  assumes member: "\<not> (member xs x)"
  shows "insertl x xs = x # xs"
  using member unfolding insertl_def by simp
lemma foldr_remove1_empty [simp]:
  "foldr remove1 xs [] = []"
  by (induct xs) simp_all
subsection {* Derived definitions *}
function unionl :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
where
  "unionl [] ys = ys"
| "unionl xs ys = foldr insertl xs ys"
by pat_completeness auto
termination by lexicographic_order
lemmas unionl_def = unionl.simps(2)
function intersect :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
where
  "intersect [] ys = []"
| "intersect xs [] = []"
| "intersect xs ys = filter (member xs) ys"
by pat_completeness auto
termination by lexicographic_order
lemmas intersect_def = intersect.simps(3)
function subtract :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
where
  "subtract [] ys = ys"
| "subtract xs [] = []"
| "subtract xs ys = foldr remove1 xs ys"
by pat_completeness auto
termination by lexicographic_order
lemmas subtract_def = subtract.simps(3)
function map_distinct :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list"
where
  "map_distinct f [] = []"
| "map_distinct f xs = foldr (insertl o f) xs []"
by pat_completeness auto
termination by lexicographic_order
lemmas map_distinct_def = map_distinct.simps(2)
function unions :: "'a list list \<Rightarrow> 'a list"
where
  "unions [] = []"
  "unions xs = foldr unionl xs []"
by pat_completeness auto
termination by lexicographic_order
lemmas unions_def = unions.simps(2)
consts intersects :: "'a list list \<Rightarrow> 'a list"
primrec
  "intersects (x#xs) = foldr intersect xs x"
definition
  map_union :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b list) \<Rightarrow> 'b list" where
  "map_union xs f = unions (map f xs)"
definition
  map_inter :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b list) \<Rightarrow> 'b list" where
  "map_inter xs f = intersects (map f xs)"
section {* Isomorphism proofs *}
lemma iso_member:
  "member xs x = (x \<in> set xs)"
  unfolding member_def mem_iff ..
lemma iso_insert:
  "set (insertl x xs) = insert x (set xs)"
  unfolding insertl_def iso_member by (simp add: Set.insert_absorb)
lemma iso_remove1:
  assumes distnct: "distinct xs"
  shows "set (remove1 x xs) = set xs - {x}"
  using distnct set_remove1_eq by auto
lemma iso_union:
  "set (unionl xs ys) = set xs \<union> set ys"
  unfolding unionl_def
  by (induct xs arbitrary: ys) (simp_all add: iso_insert)
lemma iso_intersect:
  "set (intersect xs ys) = set xs \<inter> set ys"
  unfolding intersect_def Int_def by (simp add: Int_def iso_member) auto
definition
  subtract' :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where
  "subtract' = flip subtract"
lemma iso_subtract:
  fixes ys
  assumes distnct: "distinct ys"
  shows "set (subtract' ys xs) = set ys - set xs"
  and "distinct (subtract' ys xs)"
  unfolding subtract'_def flip_def subtract_def
  using distnct by (induct xs arbitrary: ys) auto
lemma iso_map_distinct:
  "set (map_distinct f xs) = image f (set xs)"
  unfolding map_distinct_def by (induct xs) (simp_all add: iso_insert)
lemma iso_unions:
  "set (unions xss) = \<Union> set (map set xss)"
unfolding unions_def proof (induct xss)
  case Nil show ?case by simp
next
  case (Cons xs xss) thus ?case by (induct xs) (simp_all add: iso_insert)
qed
lemma iso_intersects:
  "set (intersects (xs#xss)) = \<Inter> set (map set (xs#xss))"
  by (induct xss) (simp_all add: Int_def iso_member, auto)
lemma iso_UNION:
  "set (map_union xs f) = UNION (set xs) (set o f)"
  unfolding map_union_def iso_unions by simp
lemma iso_INTER:
  "set (map_inter (x#xs) f) = INTER (set (x#xs)) (set o f)"
  unfolding map_inter_def iso_intersects by (induct xs) (simp_all add: iso_member, auto)
definition
  Blall :: "'a list \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where
  "Blall = flip list_all"
definition
  Blex :: "'a list \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where
  "Blex = flip list_ex"
lemma iso_Ball:
  "Blall xs f = Ball (set xs) f"
  unfolding Blall_def flip_def by (induct xs) simp_all
lemma iso_Bex:
  "Blex xs f = Bex (set xs) f"
  unfolding Blex_def flip_def by (induct xs) simp_all
lemma iso_filter:
  "set (filter P xs) = filter_set P (set xs)"
  unfolding filter_set_def by (induct xs) auto
section {* code generator setup *}
ML {*
nonfix inter;
nonfix union;
nonfix subset;
*}
code_modulename SML
  ExecutableSet List
  Set List
code_modulename OCaml
  ExecutableSet List
  Set List
code_modulename Haskell
  ExecutableSet List
  Set List
definition [code inline]:
  "empty_list = []"
lemma [code func]:
  "insert (x \<Colon> 'a\<Colon>eq) = insert x" ..
lemma [code func]:
  "(xs \<Colon> 'a\<Colon>eq set) \<union> ys = xs \<union> ys" ..
lemma [code func]:
  "(xs \<Colon> 'a\<Colon>eq set) \<inter> ys = xs \<inter> ys" ..
lemma [code func]:
  "(op -) (xs \<Colon> 'a\<Colon>eq set) = (op -) (xs \<Colon> 'a\<Colon>eq set)" ..
lemma [code func]:
  "image (f \<Colon> 'a \<Rightarrow> 'b\<Colon>eq) = image f" ..
lemma [code func]:
  "UNION xs (f \<Colon> 'a \<Rightarrow> 'b\<Colon>eq set) = UNION xs f" ..
lemma [code func]:
  "INTER xs (f \<Colon> 'a \<Rightarrow> 'b\<Colon>eq set) = INTER xs f" ..
lemma [code func]:
  "Ball (xs \<Colon> 'a\<Colon>type set) = Ball xs" ..
lemma [code func]:
  "Bex (xs \<Colon> 'a\<Colon>type set) = Bex xs" ..
lemma [code func]:
  "filter_set P (xs \<Colon> 'a\<Colon>type set) = filter_set P xs" ..
code_abstype "'a set" "'a list" where
  "{}" \<equiv> empty_list
  insert \<equiv> insertl
  "op \<union>" \<equiv> unionl
  "op \<inter>" \<equiv> intersect
  "op - \<Colon> 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" \<equiv> subtract'
  image \<equiv> map_distinct
  Union \<equiv> unions
  Inter \<equiv> intersects
  UNION \<equiv> map_union
  INTER \<equiv> map_inter
  Ball \<equiv> Blall
  Bex \<equiv> Blex
  filter_set \<equiv> filter
code_gen "{}" insert "op \<union>" "op \<inter>" "op - \<Colon> 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set"
  image Union Inter UNION INTER Ball Bex filter_set (SML -)
subsection {* type serializations *}
types_code
  set ("_ list")
attach (term_of) {*
fun term_of_set f T [] = Const ("{}", Type ("set", [T]))
  | term_of_set f T (x :: xs) = Const ("insert",
      T --> Type ("set", [T]) --> Type ("set", [T])) $ f x $ term_of_set f T xs;
*}
attach (test) {*
fun gen_set' aG i j = frequency
  [(i, fn () => aG j :: gen_set' aG (i-1) j), (1, fn () => [])] ()
and gen_set aG i = gen_set' aG i i;
*}
subsection {* const serializations *}
consts_code
  "{}"      ("[]")
  "insert"  ("{*insertl*}")
  "op Un"   ("{*unionl*}")
  "op Int"  ("{*intersect*}")
  "HOL.minus" :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set"
            ("{*flip subtract*}")
  "image"   ("{*map_distinct*}")
  "Union"   ("{*unions*}")
  "Inter"   ("{*intersects*}")
  "UNION"   ("{*map_union*}")
  "INTER"   ("{*map_inter*}")
  "Ball"    ("{*Blall*}")
  "Bex"     ("{*Blex*}")
  "filter_set" ("{*filter*}")
end