(* Title: HOLCF/Deflation.thy
ID: $Id$
Author: Brian Huffman
*)
header {* Continuous Deflations and Embedding-Projection Pairs *}
theory Deflation
imports Cfun
begin
defaultsort cpo
subsection {* Continuous deflations *}
locale deflation =
fixes d :: "'a \<rightarrow> 'a"
assumes idem: "\<And>x. d\<cdot>(d\<cdot>x) = d\<cdot>x"
assumes less: "\<And>x. d\<cdot>x \<sqsubseteq> x"
begin
lemma less_ID: "d \<sqsubseteq> ID"
by (rule less_cfun_ext, simp add: less)
text {* The set of fixed points is the same as the range. *}
lemma fixes_eq_range: "{x. d\<cdot>x = x} = range (\<lambda>x. d\<cdot>x)"
by (auto simp add: eq_sym_conv idem)
lemma range_eq_fixes: "range (\<lambda>x. d\<cdot>x) = {x. d\<cdot>x = x}"
by (auto simp add: eq_sym_conv idem)
text {*
The pointwise ordering on deflation functions coincides with
the subset ordering of their sets of fixed-points.
*}
lemma lessI:
assumes f: "\<And>x. d\<cdot>x = x \<Longrightarrow> f\<cdot>x = x" shows "d \<sqsubseteq> f"
proof (rule less_cfun_ext)
fix x
from less have "f\<cdot>(d\<cdot>x) \<sqsubseteq> f\<cdot>x" by (rule monofun_cfun_arg)
also from idem have "f\<cdot>(d\<cdot>x) = d\<cdot>x" by (rule f)
finally show "d\<cdot>x \<sqsubseteq> f\<cdot>x" .
qed
lemma lessD: "\<lbrakk>f \<sqsubseteq> d; f\<cdot>x = x\<rbrakk> \<Longrightarrow> d\<cdot>x = x"
proof (rule antisym_less)
from less show "d\<cdot>x \<sqsubseteq> x" .
next
assume "f \<sqsubseteq> d"
hence "f\<cdot>x \<sqsubseteq> d\<cdot>x" by (rule monofun_cfun_fun)
also assume "f\<cdot>x = x"
finally show "x \<sqsubseteq> d\<cdot>x" .
qed
end
lemma adm_deflation: "adm (\<lambda>d. deflation d)"
by (simp add: deflation_def)
lemma deflation_ID: "deflation ID"
by (simp add: deflation.intro)
lemma deflation_UU: "deflation \<bottom>"
by (simp add: deflation.intro)
lemma deflation_less_iff:
"\<lbrakk>deflation p; deflation q\<rbrakk> \<Longrightarrow> p \<sqsubseteq> q \<longleftrightarrow> (\<forall>x. p\<cdot>x = x \<longrightarrow> q\<cdot>x = x)"
apply safe
apply (simp add: deflation.lessD)
apply (simp add: deflation.lessI)
done
text {*
The composition of two deflations is equal to
the lesser of the two (if they are comparable).
*}
lemma deflation_less_comp1:
includes deflation f
includes deflation g
shows "f \<sqsubseteq> g \<Longrightarrow> f\<cdot>(g\<cdot>x) = f\<cdot>x"
proof (rule antisym_less)
from g.less show "f\<cdot>(g\<cdot>x) \<sqsubseteq> f\<cdot>x" by (rule monofun_cfun_arg)
next
assume "f \<sqsubseteq> g" hence "f\<cdot>x \<sqsubseteq> g\<cdot>x" by (rule monofun_cfun_fun)
hence "f\<cdot>(f\<cdot>x) \<sqsubseteq> f\<cdot>(g\<cdot>x)" by (rule monofun_cfun_arg)
also have "f\<cdot>(f\<cdot>x) = f\<cdot>x" by (rule f.idem)
finally show "f\<cdot>x \<sqsubseteq> f\<cdot>(g\<cdot>x)" .
qed
lemma deflation_less_comp2:
"\<lbrakk>deflation f; deflation g; f \<sqsubseteq> g\<rbrakk> \<Longrightarrow> g\<cdot>(f\<cdot>x) = f\<cdot>x"
by (simp only: deflation.lessD deflation.idem)
subsection {* Deflations with finite range *}
lemma finite_range_imp_finite_fixes:
"finite (range f) \<Longrightarrow> finite {x. f x = x}"
proof -
have "{x. f x = x} \<subseteq> range f"
by (clarify, erule subst, rule rangeI)
moreover assume "finite (range f)"
ultimately show "finite {x. f x = x}"
by (rule finite_subset)
qed
locale finite_deflation = deflation +
assumes finite_fixes: "finite {x. d\<cdot>x = x}"
begin
lemma finite_range: "finite (range (\<lambda>x. d\<cdot>x))"
by (simp add: range_eq_fixes finite_fixes)
lemma finite_image: "finite ((\<lambda>x. d\<cdot>x) ` A)"
by (rule finite_subset [OF image_mono [OF subset_UNIV] finite_range])
lemma compact: "compact (d\<cdot>x)"
proof (rule compactI2)
fix Y :: "nat \<Rightarrow> 'a"
assume Y: "chain Y"
have "finite_chain (\<lambda>i. d\<cdot>(Y i))"
proof (rule finite_range_imp_finch)
show "chain (\<lambda>i. d\<cdot>(Y i))"
using Y by simp
have "range (\<lambda>i. d\<cdot>(Y i)) \<subseteq> range (\<lambda>x. d\<cdot>x)"
by clarsimp
thus "finite (range (\<lambda>i. d\<cdot>(Y i)))"
using finite_range by (rule finite_subset)
qed
hence "\<exists>j. (\<Squnion>i. d\<cdot>(Y i)) = d\<cdot>(Y j)"
by (simp add: finite_chain_def maxinch_is_thelub Y)
then obtain j where j: "(\<Squnion>i. d\<cdot>(Y i)) = d\<cdot>(Y j)" ..
assume "d\<cdot>x \<sqsubseteq> (\<Squnion>i. Y i)"
hence "d\<cdot>(d\<cdot>x) \<sqsubseteq> d\<cdot>(\<Squnion>i. Y i)"
by (rule monofun_cfun_arg)
hence "d\<cdot>x \<sqsubseteq> (\<Squnion>i. d\<cdot>(Y i))"
by (simp add: contlub_cfun_arg Y idem)
hence "d\<cdot>x \<sqsubseteq> d\<cdot>(Y j)"
using j by simp
hence "d\<cdot>x \<sqsubseteq> Y j"
using less by (rule trans_less)
thus "\<exists>j. d\<cdot>x \<sqsubseteq> Y j" ..
qed
end
subsection {* Continuous embedding-projection pairs *}
locale ep_pair =
fixes e :: "'a \<rightarrow> 'b" and p :: "'b \<rightarrow> 'a"
assumes e_inverse [simp]: "\<And>x. p\<cdot>(e\<cdot>x) = x"
and e_p_less: "\<And>y. e\<cdot>(p\<cdot>y) \<sqsubseteq> y"
begin
lemma e_less_iff [simp]: "e\<cdot>x \<sqsubseteq> e\<cdot>y \<longleftrightarrow> x \<sqsubseteq> y"
proof
assume "e\<cdot>x \<sqsubseteq> e\<cdot>y"
hence "p\<cdot>(e\<cdot>x) \<sqsubseteq> p\<cdot>(e\<cdot>y)" by (rule monofun_cfun_arg)
thus "x \<sqsubseteq> y" by simp
next
assume "x \<sqsubseteq> y"
thus "e\<cdot>x \<sqsubseteq> e\<cdot>y" by (rule monofun_cfun_arg)
qed
lemma e_eq_iff [simp]: "e\<cdot>x = e\<cdot>y \<longleftrightarrow> x = y"
unfolding po_eq_conv e_less_iff ..
lemma p_eq_iff:
"\<lbrakk>e\<cdot>(p\<cdot>x) = x; e\<cdot>(p\<cdot>y) = y\<rbrakk> \<Longrightarrow> p\<cdot>x = p\<cdot>y \<longleftrightarrow> x = y"
by (safe, erule subst, erule subst, simp)
lemma p_inverse: "(\<exists>x. y = e\<cdot>x) = (e\<cdot>(p\<cdot>y) = y)"
by (auto, rule exI, erule sym)
lemma e_less_iff_less_p: "e\<cdot>x \<sqsubseteq> y \<longleftrightarrow> x \<sqsubseteq> p\<cdot>y"
proof
assume "e\<cdot>x \<sqsubseteq> y"
then have "p\<cdot>(e\<cdot>x) \<sqsubseteq> p\<cdot>y" by (rule monofun_cfun_arg)
then show "x \<sqsubseteq> p\<cdot>y" by simp
next
assume "x \<sqsubseteq> p\<cdot>y"
then have "e\<cdot>x \<sqsubseteq> e\<cdot>(p\<cdot>y)" by (rule monofun_cfun_arg)
then show "e\<cdot>x \<sqsubseteq> y" using e_p_less by (rule trans_less)
qed
lemma compact_e_rev: "compact (e\<cdot>x) \<Longrightarrow> compact x"
proof -
assume "compact (e\<cdot>x)"
hence "adm (\<lambda>y. \<not> e\<cdot>x \<sqsubseteq> y)" by (rule compactD)
hence "adm (\<lambda>y. \<not> e\<cdot>x \<sqsubseteq> e\<cdot>y)" by (rule adm_subst [OF cont_Rep_CFun2])
hence "adm (\<lambda>y. \<not> x \<sqsubseteq> y)" by simp
thus "compact x" by (rule compactI)
qed
lemma compact_e: "compact x \<Longrightarrow> compact (e\<cdot>x)"
proof -
assume "compact x"
hence "adm (\<lambda>y. \<not> x \<sqsubseteq> y)" by (rule compactD)
hence "adm (\<lambda>y. \<not> x \<sqsubseteq> p\<cdot>y)" by (rule adm_subst [OF cont_Rep_CFun2])
hence "adm (\<lambda>y. \<not> e\<cdot>x \<sqsubseteq> y)" by (simp add: e_less_iff_less_p)
thus "compact (e\<cdot>x)" by (rule compactI)
qed
lemma compact_e_iff: "compact (e\<cdot>x) \<longleftrightarrow> compact x"
by (rule iffI [OF compact_e_rev compact_e])
text {* Deflations from ep-pairs *}
lemma deflation_e_p: "deflation (e oo p)"
by (simp add: deflation.intro e_p_less)
lemma deflation_e_d_p:
includes deflation d
shows "deflation (e oo d oo p)"
proof
fix x :: 'b
show "(e oo d oo p)\<cdot>((e oo d oo p)\<cdot>x) = (e oo d oo p)\<cdot>x"
by (simp add: idem)
show "(e oo d oo p)\<cdot>x \<sqsubseteq> x"
by (simp add: e_less_iff_less_p less)
qed
lemma finite_deflation_e_d_p:
includes finite_deflation d
shows "finite_deflation (e oo d oo p)"
proof
fix x :: 'b
show "(e oo d oo p)\<cdot>((e oo d oo p)\<cdot>x) = (e oo d oo p)\<cdot>x"
by (simp add: idem)
show "(e oo d oo p)\<cdot>x \<sqsubseteq> x"
by (simp add: e_less_iff_less_p less)
have "finite ((\<lambda>x. e\<cdot>x) ` (\<lambda>x. d\<cdot>x) ` range (\<lambda>x. p\<cdot>x))"
by (simp add: finite_image)
hence "finite (range (\<lambda>x. (e oo d oo p)\<cdot>x))"
by (simp add: image_image)
thus "finite {x. (e oo d oo p)\<cdot>x = x}"
by (rule finite_range_imp_finite_fixes)
qed
lemma deflation_p_d_e:
includes deflation d
assumes d: "\<And>x. d\<cdot>x \<sqsubseteq> e\<cdot>(p\<cdot>x)"
shows "deflation (p oo d oo e)"
apply (default, simp_all)
apply (rule antisym_less)
apply (rule monofun_cfun_arg)
apply (rule trans_less [OF d])
apply (simp add: e_p_less)
apply (rule monofun_cfun_arg)
apply (rule rev_trans_less)
apply (rule monofun_cfun_arg)
apply (rule d)
apply (simp add: d.idem)
apply (rule sq_ord_less_eq_trans)
apply (rule monofun_cfun_arg)
apply (rule d.less)
apply (rule e_inverse)
done
lemma finite_deflation_p_d_e:
includes finite_deflation d
assumes d: "\<And>x. d\<cdot>x \<sqsubseteq> e\<cdot>(p\<cdot>x)"
shows "finite_deflation (p oo d oo e)"
apply (rule finite_deflation.intro)
apply (rule deflation_p_d_e)
apply (rule `deflation d`)
apply (rule d)
apply (rule finite_deflation_axioms.intro)
apply (rule finite_range_imp_finite_fixes)
apply (simp add: range_composition [where f="\<lambda>x. p\<cdot>x"])
apply (simp add: range_composition [where f="\<lambda>x. d\<cdot>x"])
apply (simp add: d.finite_image)
done
end
subsection {* Uniqueness of ep-pairs *}
lemma ep_pair_unique_e:
"\<lbrakk>ep_pair e1 p; ep_pair e2 p\<rbrakk> \<Longrightarrow> e1 = e2"
apply (rule ext_cfun)
apply (rule antisym_less)
apply (subgoal_tac "e1\<cdot>(p\<cdot>(e2\<cdot>x)) \<sqsubseteq> e2\<cdot>x")
apply (simp add: ep_pair.e_inverse)
apply (erule ep_pair.e_p_less)
apply (subgoal_tac "e2\<cdot>(p\<cdot>(e1\<cdot>x)) \<sqsubseteq> e1\<cdot>x")
apply (simp add: ep_pair.e_inverse)
apply (erule ep_pair.e_p_less)
done
lemma ep_pair_unique_p:
"\<lbrakk>ep_pair e p1; ep_pair e p2\<rbrakk> \<Longrightarrow> p1 = p2"
apply (rule ext_cfun)
apply (rule antisym_less)
apply (subgoal_tac "p2\<cdot>(e\<cdot>(p1\<cdot>x)) \<sqsubseteq> p2\<cdot>x")
apply (simp add: ep_pair.e_inverse)
apply (rule monofun_cfun_arg)
apply (erule ep_pair.e_p_less)
apply (subgoal_tac "p1\<cdot>(e\<cdot>(p2\<cdot>x)) \<sqsubseteq> p1\<cdot>x")
apply (simp add: ep_pair.e_inverse)
apply (rule monofun_cfun_arg)
apply (erule ep_pair.e_p_less)
done
subsection {* Composing ep-pairs *}
lemma ep_pair_ID_ID: "ep_pair ID ID"
by default simp_all
lemma ep_pair_comp:
"\<lbrakk>ep_pair e1 p1; ep_pair e2 p2\<rbrakk>
\<Longrightarrow> ep_pair (e2 oo e1) (p1 oo p2)"
apply (rule ep_pair.intro)
apply (simp add: ep_pair.e_inverse)
apply (simp, rule trans_less)
apply (rule monofun_cfun_arg)
apply (erule ep_pair.e_p_less)
apply (erule ep_pair.e_p_less)
done
locale pcpo_ep_pair = ep_pair +
constrains e :: "'a::pcpo \<rightarrow> 'b::pcpo"
constrains p :: "'b::pcpo \<rightarrow> 'a::pcpo"
begin
lemma e_strict [simp]: "e\<cdot>\<bottom> = \<bottom>"
proof -
have "\<bottom> \<sqsubseteq> p\<cdot>\<bottom>" by (rule minimal)
hence "e\<cdot>\<bottom> \<sqsubseteq> e\<cdot>(p\<cdot>\<bottom>)" by (rule monofun_cfun_arg)
also have "e\<cdot>(p\<cdot>\<bottom>) \<sqsubseteq> \<bottom>" by (rule e_p_less)
finally show "e\<cdot>\<bottom> = \<bottom>" by simp
qed
lemma e_defined_iff [simp]: "e\<cdot>x = \<bottom> \<longleftrightarrow> x = \<bottom>"
by (rule e_eq_iff [where y="\<bottom>", unfolded e_strict])
lemma e_defined: "x \<noteq> \<bottom> \<Longrightarrow> e\<cdot>x \<noteq> \<bottom>"
by simp
lemma p_strict [simp]: "p\<cdot>\<bottom> = \<bottom>"
by (rule e_inverse [where x="\<bottom>", unfolded e_strict])
lemmas stricts = e_strict p_strict
end
end