(* Title: Pure/context.ML
Author: Markus Wenzel, TU Muenchen
Generic theory contexts with unique identity, arbitrarily typed data,
monotonic development graph and history support. Generic proof
contexts with arbitrarily typed data.
Firm naming conventions:
thy, thy', thy1, thy2: theory
ctxt, ctxt', ctxt1, ctxt2: Proof.context
context: Context.generic
*)
signature BASIC_CONTEXT =
sig
type theory
type theory_ref
exception THEORY of string * theory list
structure Proof: sig type context end
structure ProofContext:
sig
val theory_of: Proof.context -> theory
val init_global: theory -> Proof.context
end
end;
signature CONTEXT =
sig
include BASIC_CONTEXT
(*theory context*)
val parents_of: theory -> theory list
val ancestors_of: theory -> theory list
val theory_name: theory -> string
val is_stale: theory -> bool
val is_draft: theory -> bool
val reject_draft: theory -> theory
val PureN: string
val display_names: theory -> string list
val pretty_thy: theory -> Pretty.T
val string_of_thy: theory -> string
val pretty_abbrev_thy: theory -> Pretty.T
val str_of_thy: theory -> string
val get_theory: theory -> string -> theory
val this_theory: theory -> string -> theory
val deref: theory_ref -> theory
val check_thy: theory -> theory_ref
val eq_thy: theory * theory -> bool
val subthy: theory * theory -> bool
val joinable: theory * theory -> bool
val merge: theory * theory -> theory
val merge_refs: theory_ref * theory_ref -> theory_ref
val copy_thy: theory -> theory
val checkpoint_thy: theory -> theory
val finish_thy: theory -> theory
val begin_thy: (theory -> Pretty.pp) -> string -> theory list -> theory
(*proof context*)
val raw_transfer: theory -> Proof.context -> Proof.context
(*generic context*)
datatype generic = Theory of theory | Proof of Proof.context
val cases: (theory -> 'a) -> (Proof.context -> 'a) -> generic -> 'a
val mapping: (theory -> theory) -> (Proof.context -> Proof.context) -> generic -> generic
val mapping_result: (theory -> 'a * theory) -> (Proof.context -> 'a * Proof.context) ->
generic -> 'a * generic
val the_theory: generic -> theory
val the_proof: generic -> Proof.context
val map_theory: (theory -> theory) -> generic -> generic
val map_proof: (Proof.context -> Proof.context) -> generic -> generic
val map_theory_result: (theory -> 'a * theory) -> generic -> 'a * generic
val map_proof_result: (Proof.context -> 'a * Proof.context) -> generic -> 'a * generic
val theory_map: (generic -> generic) -> theory -> theory
val proof_map: (generic -> generic) -> Proof.context -> Proof.context
val theory_of: generic -> theory (*total*)
val proof_of: generic -> Proof.context (*total*)
(*thread data*)
val thread_data: unit -> generic option
val the_thread_data: unit -> generic
val set_thread_data: generic option -> unit
val setmp_thread_data: generic option -> ('a -> 'b) -> 'a -> 'b
val >> : (generic -> generic) -> unit
val >>> : (generic -> 'a * generic) -> 'a
end;
signature PRIVATE_CONTEXT =
sig
include CONTEXT
structure Theory_Data:
sig
val declare: Object.T -> (Object.T -> Object.T) ->
(Pretty.pp -> Object.T * Object.T -> Object.T) -> serial
val get: serial -> (Object.T -> 'a) -> theory -> 'a
val put: serial -> ('a -> Object.T) -> 'a -> theory -> theory
end
structure Proof_Data:
sig
val declare: (theory -> Object.T) -> serial
val get: serial -> (Object.T -> 'a) -> Proof.context -> 'a
val put: serial -> ('a -> Object.T) -> 'a -> Proof.context -> Proof.context
end
end;
structure Context: PRIVATE_CONTEXT =
struct
(*** theory context ***)
(** theory data **)
(* data kinds and access methods *)
(*private copy avoids potential conflict of table exceptions*)
structure Datatab = Table(type key = int val ord = int_ord);
local
type kind =
{empty: Object.T,
extend: Object.T -> Object.T,
merge: Pretty.pp -> Object.T * Object.T -> Object.T};
val kinds = Unsynchronized.ref (Datatab.empty: kind Datatab.table);
fun invoke f k =
(case Datatab.lookup (! kinds) k of
SOME kind => f kind
| NONE => raise Fail "Invalid theory data identifier");
in
fun invoke_empty k = invoke (K o #empty) k ();
val invoke_extend = invoke #extend;
fun invoke_merge pp = invoke (fn kind => #merge kind pp);
fun declare_theory_data empty extend merge =
let
val k = serial ();
val kind = {empty = empty, extend = extend, merge = merge};
val _ = CRITICAL (fn () => Unsynchronized.change kinds (Datatab.update (k, kind)));
in k end;
val extend_data = Datatab.map invoke_extend;
fun merge_data pp (data1, data2) =
Datatab.keys (Datatab.merge (K true) (data1, data2))
|> Par_List.map (fn k =>
(case (Datatab.lookup data1 k, Datatab.lookup data2 k) of
(SOME x, NONE) => (k, invoke_extend k x)
| (NONE, SOME y) => (k, invoke_extend k y)
| (SOME x, SOME y) => (k, invoke_merge pp k (invoke_extend k x, invoke_extend k y))))
|> Datatab.make;
end;
(** datatype theory **)
datatype theory =
Theory of
(*identity*)
{self: theory Unsynchronized.ref option, (*dynamic self reference -- follows theory changes*)
draft: bool, (*draft mode -- linear destructive changes*)
id: serial, (*identifier*)
ids: unit Inttab.table} * (*cumulative identifiers of non-drafts -- symbolic body content*)
(*data*)
Object.T Datatab.table * (*body content*)
(*ancestry*)
{parents: theory list, (*immediate predecessors*)
ancestors: theory list} * (*all predecessors -- canonical reverse order*)
(*history*)
{name: string, (*official theory name*)
stage: int}; (*checkpoint counter*)
exception THEORY of string * theory list;
fun rep_theory (Theory args) = args;
val identity_of = #1 o rep_theory;
val data_of = #2 o rep_theory;
val ancestry_of = #3 o rep_theory;
val history_of = #4 o rep_theory;
fun make_identity self draft id ids = {self = self, draft = draft, id = id, ids = ids};
fun make_ancestry parents ancestors = {parents = parents, ancestors = ancestors};
fun make_history name stage = {name = name, stage = stage};
val the_self = the o #self o identity_of;
val parents_of = #parents o ancestry_of;
val ancestors_of = #ancestors o ancestry_of;
val theory_name = #name o history_of;
(* staleness *)
fun eq_id (i: int, j) = i = j;
fun is_stale
(Theory ({self =
SOME (Unsynchronized.ref (Theory ({id = id', ...}, _, _, _))), id, ...}, _, _, _)) =
not (eq_id (id, id'))
| is_stale (Theory ({self = NONE, ...}, _, _, _)) = true;
fun vitalize (thy as Theory ({self = SOME r, ...}, _, _, _)) = (r := thy; thy)
| vitalize (thy as Theory ({self = NONE, draft, id, ids}, data, ancestry, history)) =
let
val r = Unsynchronized.ref thy;
val thy' = Theory (make_identity (SOME r) draft id ids, data, ancestry, history);
in r := thy'; thy' end;
(* draft mode *)
val is_draft = #draft o identity_of;
fun reject_draft thy =
if is_draft thy then
raise THEORY ("Illegal draft theory -- stable checkpoint required", [thy])
else thy;
(* names *)
val PureN = "Pure";
val draftN = "#";
val finished = ~1;
fun display_names thy =
let
val draft = if is_draft thy then [draftN] else [];
val {stage, ...} = history_of thy;
val name =
if stage = finished then theory_name thy
else theory_name thy ^ ":" ^ string_of_int stage;
val ancestor_names = map theory_name (ancestors_of thy);
val stale = if is_stale thy then ["!"] else [];
in rev (stale @ draft @ [name] @ ancestor_names) end;
val pretty_thy = Pretty.str_list "{" "}" o display_names;
val string_of_thy = Pretty.string_of o pretty_thy;
fun pretty_abbrev_thy thy =
let
val names = display_names thy;
val n = length names;
val abbrev = if n > 5 then "..." :: List.drop (names, n - 5) else names;
in Pretty.str_list "{" "}" abbrev end;
val str_of_thy = Pretty.str_of o pretty_abbrev_thy;
fun get_theory thy name =
if theory_name thy <> name then
(case find_first (fn thy' => theory_name thy' = name) (ancestors_of thy) of
SOME thy' => thy'
| NONE => error ("Unknown ancestor theory " ^ quote name))
else if #stage (history_of thy) = finished then thy
else error ("Unfinished theory " ^ quote name);
fun this_theory thy name =
if theory_name thy = name then thy
else get_theory thy name;
(* theory references *)
(*theory_ref provides a safe way to store dynamic references to a
theory in external data structures -- a plain theory value would
become stale as the self reference moves on*)
datatype theory_ref = Theory_Ref of theory Unsynchronized.ref;
fun deref (Theory_Ref (Unsynchronized.ref thy)) = thy;
fun check_thy thy = (*thread-safe version*)
let val thy_ref = Theory_Ref (the_self thy) in
if is_stale thy then error ("Stale theory encountered:\n" ^ string_of_thy thy)
else thy_ref
end;
(* build ids *)
fun insert_id draft id ids =
if draft then ids
else Inttab.update (id, ()) ids;
fun merge_ids
(Theory ({draft = draft1, id = id1, ids = ids1, ...}, _, _, _))
(Theory ({draft = draft2, id = id2, ids = ids2, ...}, _, _, _)) =
Inttab.merge (K true) (ids1, ids2)
|> insert_id draft1 id1
|> insert_id draft2 id2;
(* equality and inclusion *)
val eq_thy = eq_id o pairself (#id o identity_of);
fun proper_subthy (Theory ({id, ...}, _, _, _), Theory ({ids, ...}, _, _, _)) =
Inttab.defined ids id;
fun subthy thys = eq_thy thys orelse proper_subthy thys;
fun joinable (thy1, thy2) = subthy (thy1, thy2) orelse subthy (thy2, thy1);
(* consistent ancestors *)
fun extend_ancestors thy thys =
if member eq_thy thys thy then
raise THEORY ("Duplicate theory node", thy :: thys)
else thy :: thys;
fun extend_ancestors_of thy = extend_ancestors thy (ancestors_of thy);
val merge_ancestors = merge (fn (thy1, thy2) =>
eq_thy (thy1, thy2) orelse
theory_name thy1 = theory_name thy2 andalso
raise THEORY ("Inconsistent theory versions", [thy1, thy2]));
(* trivial merge *)
fun merge (thy1, thy2) =
if eq_thy (thy1, thy2) then thy1
else if proper_subthy (thy2, thy1) then thy1
else if proper_subthy (thy1, thy2) then thy2
else error (cat_lines ["Attempt to perform non-trivial merge of theories:",
str_of_thy thy1, str_of_thy thy2]);
fun merge_refs (ref1, ref2) =
if ref1 = ref2 then ref1
else check_thy (merge (deref ref1, deref ref2));
(** build theories **)
(* primitives *)
local
val lock = Mutex.mutex ();
in
fun SYNCHRONIZED e = Simple_Thread.synchronized "theory" lock e;
end;
fun create_thy self draft ids data ancestry history =
let val identity = make_identity self draft (serial ()) ids;
in vitalize (Theory (identity, data, ancestry, history)) end;
fun change_thy draft' f thy =
let
val Theory ({self, draft, id, ids}, data, ancestry, history) = thy;
val (self', data', ancestry') =
if draft then (self, data, ancestry) (*destructive change!*)
else if #stage history > 0
then (NONE, data, ancestry)
else (NONE, extend_data data, make_ancestry [thy] (extend_ancestors_of thy));
val ids' = insert_id draft id ids;
val data'' = f data';
val thy' = SYNCHRONIZED (fn () =>
(check_thy thy; create_thy self' draft' ids' data'' ancestry' history));
in thy' end;
val name_thy = change_thy false I;
val extend_thy = change_thy true I;
val modify_thy = change_thy true;
fun copy_thy thy =
let
val Theory ({draft, id, ids, ...}, data, ancestry, history) = thy;
val ids' = insert_id draft id ids;
val thy' = SYNCHRONIZED (fn () =>
(check_thy thy; create_thy NONE true ids' data ancestry history));
in thy' end;
val pre_pure_thy = create_thy NONE true Inttab.empty
Datatab.empty (make_ancestry [] []) (make_history PureN 0);
(* named theory nodes *)
fun merge_thys pp (thy1, thy2) =
let
val ids = merge_ids thy1 thy2;
val data = merge_data (pp thy1) (data_of thy1, data_of thy2);
val ancestry = make_ancestry [] [];
val history = make_history "" 0;
val thy' = SYNCHRONIZED (fn () =>
(check_thy thy1; check_thy thy2; create_thy NONE true ids data ancestry history));
in thy' end;
fun maximal_thys thys =
thys |> filter_out (fn thy => exists (fn thy' => proper_subthy (thy, thy')) thys);
fun begin_thy pp name imports =
if name = "" orelse name = draftN then error ("Bad theory name: " ^ quote name)
else
let
val parents = maximal_thys (distinct eq_thy imports);
val ancestors =
Library.foldl merge_ancestors ([], map ancestors_of parents)
|> fold extend_ancestors parents;
val Theory ({ids, ...}, data, _, _) =
(case parents of
[] => error "No parent theories"
| [thy] => extend_thy thy
| thy :: thys => Library.foldl (merge_thys pp) (thy, thys));
val ancestry = make_ancestry parents ancestors;
val history = make_history name 0;
val thy' = SYNCHRONIZED (fn () =>
(map check_thy imports; create_thy NONE true ids data ancestry history));
in thy' end;
(* history stages *)
fun history_stage f thy =
let
val {name, stage} = history_of thy;
val _ = stage = finished andalso raise THEORY ("Theory already finished", [thy]);
val history' = make_history name (f stage);
val thy' as Theory (identity', data', ancestry', _) = name_thy thy;
val thy'' = SYNCHRONIZED (fn () =>
(check_thy thy'; vitalize (Theory (identity', data', ancestry', history'))));
in thy'' end;
fun checkpoint_thy thy =
if is_draft thy then history_stage (fn stage => stage + 1) thy
else thy;
val finish_thy = history_stage (fn _ => finished);
(* theory data *)
structure Theory_Data =
struct
val declare = declare_theory_data;
fun get k dest thy =
(case Datatab.lookup (data_of thy) k of
SOME x => x
| NONE => invoke_empty k) |> dest;
fun put k mk x = modify_thy (Datatab.update (k, mk x));
end;
(*** proof context ***)
(* datatype Proof.context *)
structure Proof =
struct
datatype context = Context of Object.T Datatab.table * theory_ref;
end;
fun theory_of_proof (Proof.Context (_, thy_ref)) = deref thy_ref;
fun data_of_proof (Proof.Context (data, _)) = data;
fun map_prf f (Proof.Context (data, thy_ref)) = Proof.Context (f data, thy_ref);
(* proof data kinds *)
local
val kinds = Unsynchronized.ref (Datatab.empty: (theory -> Object.T) Datatab.table);
fun invoke_init k =
(case Datatab.lookup (! kinds) k of
SOME init => init
| NONE => raise Fail "Invalid proof data identifier");
fun init_data thy =
Datatab.map (fn k => fn _ => invoke_init k thy) (! kinds);
fun init_new_data data thy =
Datatab.merge (K true) (data, init_data thy);
in
fun raw_transfer thy' (Proof.Context (data, thy_ref)) =
let
val thy = deref thy_ref;
val _ = subthy (thy, thy') orelse error "transfer proof context: not a super theory";
val _ = check_thy thy;
val data' = init_new_data data thy';
val thy_ref' = check_thy thy';
in Proof.Context (data', thy_ref') end;
structure ProofContext =
struct
val theory_of = theory_of_proof;
fun init_global thy = Proof.Context (init_data thy, check_thy thy);
end;
structure Proof_Data =
struct
fun declare init =
let
val k = serial ();
val _ = CRITICAL (fn () => Unsynchronized.change kinds (Datatab.update (k, init)));
in k end;
fun get k dest prf =
dest (case Datatab.lookup (data_of_proof prf) k of
SOME x => x
| NONE => invoke_init k (ProofContext.theory_of prf)); (*adhoc value*)
fun put k mk x = map_prf (Datatab.update (k, mk x));
end;
end;
(*** generic context ***)
datatype generic = Theory of theory | Proof of Proof.context;
fun cases f _ (Theory thy) = f thy
| cases _ g (Proof prf) = g prf;
fun mapping f g = cases (Theory o f) (Proof o g);
fun mapping_result f g = cases (apsnd Theory o f) (apsnd Proof o g);
val the_theory = cases I (fn _ => error "Ill-typed context: theory expected");
val the_proof = cases (fn _ => error "Ill-typed context: proof expected") I;
fun map_theory f = Theory o f o the_theory;
fun map_proof f = Proof o f o the_proof;
fun map_theory_result f = apsnd Theory o f o the_theory;
fun map_proof_result f = apsnd Proof o f o the_proof;
fun theory_map f = the_theory o f o Theory;
fun proof_map f = the_proof o f o Proof;
val theory_of = cases I ProofContext.theory_of;
val proof_of = cases ProofContext.init_global I;
(** thread data **)
local val tag = Universal.tag () : generic option Universal.tag in
fun thread_data () =
(case Thread.getLocal tag of
SOME (SOME context) => SOME context
| _ => NONE);
fun the_thread_data () =
(case thread_data () of
SOME context => context
| _ => error "Unknown context");
fun set_thread_data context = Thread.setLocal (tag, context);
fun setmp_thread_data context = Library.setmp_thread_data tag (thread_data ()) context;
end;
fun >>> f =
let
val (res, context') = f (the_thread_data ());
val _ = set_thread_data (SOME context');
in res end;
nonfix >>;
fun >> f = >>> (fn context => ((), f context));
val _ = set_thread_data (SOME (Theory pre_pure_thy));
end;
structure Basic_Context: BASIC_CONTEXT = Context;
open Basic_Context;
(*** type-safe interfaces for data declarations ***)
(** theory data **)
signature THEORY_DATA_PP_ARGS =
sig
type T
val empty: T
val extend: T -> T
val merge: Pretty.pp -> T * T -> T
end;
signature THEORY_DATA_ARGS =
sig
type T
val empty: T
val extend: T -> T
val merge: T * T -> T
end;
signature THEORY_DATA =
sig
type T
val get: theory -> T
val put: T -> theory -> theory
val map: (T -> T) -> theory -> theory
end;
functor Theory_Data_PP(Data: THEORY_DATA_PP_ARGS): THEORY_DATA =
struct
type T = Data.T;
exception Data of T;
val kind = Context.Theory_Data.declare
(Data Data.empty)
(fn Data x => Data (Data.extend x))
(fn pp => fn (Data x1, Data x2) => Data (Data.merge pp (x1, x2)));
val get = Context.Theory_Data.get kind (fn Data x => x);
val put = Context.Theory_Data.put kind Data;
fun map f thy = put (f (get thy)) thy;
end;
functor Theory_Data(Data: THEORY_DATA_ARGS): THEORY_DATA =
Theory_Data_PP
(
type T = Data.T;
val empty = Data.empty;
val extend = Data.extend;
fun merge _ = Data.merge;
);
(** proof data **)
signature PROOF_DATA_ARGS =
sig
type T
val init: theory -> T
end;
signature PROOF_DATA =
sig
type T
val get: Proof.context -> T
val put: T -> Proof.context -> Proof.context
val map: (T -> T) -> Proof.context -> Proof.context
end;
functor Proof_Data(Data: PROOF_DATA_ARGS): PROOF_DATA =
struct
type T = Data.T;
exception Data of T;
val kind = Context.Proof_Data.declare (Data o Data.init);
val get = Context.Proof_Data.get kind (fn Data x => x);
val put = Context.Proof_Data.put kind Data;
fun map f prf = put (f (get prf)) prf;
end;
(** generic data **)
signature GENERIC_DATA_ARGS =
sig
type T
val empty: T
val extend: T -> T
val merge: T * T -> T
end;
signature GENERIC_DATA =
sig
type T
val get: Context.generic -> T
val put: T -> Context.generic -> Context.generic
val map: (T -> T) -> Context.generic -> Context.generic
end;
functor Generic_Data(Data: GENERIC_DATA_ARGS): GENERIC_DATA =
struct
structure Thy_Data = Theory_Data(Data);
structure Prf_Data = Proof_Data(type T = Data.T val init = Thy_Data.get);
type T = Data.T;
fun get (Context.Theory thy) = Thy_Data.get thy
| get (Context.Proof prf) = Prf_Data.get prf;
fun put x (Context.Theory thy) = Context.Theory (Thy_Data.put x thy)
| put x (Context.Proof prf) = Context.Proof (Prf_Data.put x prf);
fun map f ctxt = put (f (get ctxt)) ctxt;
end;
(*hide private interface*)
structure Context: CONTEXT = Context;