New theorems mostly concerning infinite series.
(* Title: HOL/SizeChange/sct.ML
Author: Alexander Krauss, TU Muenchen
Tactics for size change termination.
*)
signature SCT =
sig
val abs_rel_tac : tactic
val mk_call_graph : Proof.context -> tactic
end
structure Sct : SCT =
struct
fun matrix [] ys = []
| matrix (x::xs) ys = map (pair x) ys :: matrix xs ys
fun map_matrix f xss = map (map f) xss
val scgT = @{typ "nat scg"}
val acgT = @{typ "nat acg"}
fun edgeT nT eT = HOLogic.mk_prodT (nT, HOLogic.mk_prodT (eT, nT))
fun graphT nT eT = Type ("Graphs.graph", [nT, eT])
fun graph_const nT eT = Const ("Graphs.graph.Graph", HOLogic.mk_setT (edgeT nT eT) --> graphT nT eT)
val stepP_const = "Interpretation.stepP"
val stepP_def = thm "Interpretation.stepP.simps"
fun mk_stepP RD1 RD2 M1 M2 Rel =
let val RDT = fastype_of RD1
val MT = fastype_of M1
in
Const (stepP_const, RDT --> RDT --> MT --> MT --> (fastype_of Rel) --> HOLogic.boolT)
$ RD1 $ RD2 $ M1 $ M2 $ Rel
end
val no_stepI = thm "Interpretation.no_stepI"
val approx_const = "Interpretation.approx"
val approx_empty = thm "Interpretation.approx_empty"
val approx_less = thm "Interpretation.approx_less"
val approx_leq = thm "Interpretation.approx_leq"
fun mk_approx G RD1 RD2 Ms1 Ms2 =
let val RDT = fastype_of RD1
val MsT = fastype_of Ms1
in Const (approx_const, scgT --> RDT --> RDT --> MsT --> MsT --> HOLogic.boolT) $ G $ RD1 $ RD2 $ Ms1 $ Ms2 end
val sound_int_const = "Interpretation.sound_int"
val sound_int_def = thm "Interpretation.sound_int_def"
fun mk_sound_int A RDs M =
let val RDsT = fastype_of RDs
val MT = fastype_of M
in Const (sound_int_const, acgT --> RDsT --> MT --> HOLogic.boolT) $ A $ RDs $ M end
val nth_const = "List.nth"
fun mk_nth xs =
let val lT as Type (_, [T]) = fastype_of xs
in Const (nth_const, lT --> HOLogic.natT --> T) $ xs end
val has_edge_simps = [thm "Graphs.has_edge_def", thm "Graphs.dest_graph.simps"]
val all_less_zero = thm "Interpretation.all_less_zero"
val all_less_Suc = thm "Interpretation.all_less_Suc"
(* --> Library? *)
fun del_index n [] = []
| del_index n (x :: xs) =
if n>0 then x :: del_index (n - 1) xs else xs
(* Lists as finite multisets *)
fun remove1 eq x [] = []
| remove1 eq x (y :: ys) = if eq (x, y) then ys else y :: remove1 eq x ys
fun multi_union eq [] ys = ys
| multi_union eq (x::xs) ys = x :: multi_union eq xs (remove1 eq x ys)
fun dest_ex (Const ("Ex", _) $ Abs (a as (_,T,_))) =
let
val (n, body) = Term.dest_abs a
in
(Free (n, T), body)
end
| dest_ex _ = raise Match
fun dest_all_ex (t as (Const ("Ex",_) $ _)) =
let
val (v,b) = dest_ex t
val (vs, b') = dest_all_ex b
in
(v :: vs, b')
end
| dest_all_ex t = ([],t)
fun dist_vars [] vs = (null vs orelse error "dist_vars"; [])
| dist_vars (T::Ts) vs =
case find_index (fn v => fastype_of v = T) vs of
~1 => Free ("", T) :: dist_vars Ts vs
| i => (nth vs i) :: dist_vars Ts (del_index i vs)
fun dest_case rebind t =
let
val ((_ $ _ $ rhs) :: (_ $ _ $ match) :: guards) = HOLogic.dest_conj t
val guard = case guards of [] => HOLogic.true_const | gs => foldr1 HOLogic.mk_conj gs
in
foldr1 HOLogic.mk_prod [rebind guard, rebind rhs, rebind match]
end
fun bind_many [] = I
| bind_many vs = FundefLib.tupled_lambda (foldr1 HOLogic.mk_prod vs)
(* Builds relation descriptions from a relation definition *)
fun mk_reldescs (Abs a) =
let
val (_, Abs a') = Term.dest_abs a
val (_, b) = Term.dest_abs a'
val cases = HOLogic.dest_disj b
val (vss, bs) = split_list (map dest_all_ex cases)
val unionTs = fold (multi_union (op =)) (map (map fastype_of) vss) []
val rebind = map (bind_many o dist_vars unionTs) vss
val RDs = map2 dest_case rebind bs
in
HOLogic.mk_list (fastype_of (hd RDs)) RDs
end
fun abs_rel_tac (st : thm) =
let
val thy = theory_of_thm st
val (def, rd) = HOLogic.dest_eq (HOLogic.dest_Trueprop (hd (prems_of st)))
val RDs = cterm_of thy (mk_reldescs def)
val rdvar = Var (the_single (Term.add_vars rd [])) |> cterm_of thy
in
Seq.single (cterm_instantiate [(rdvar, RDs)] st)
end
(* very primitive *)
fun measures_of ctxt RD =
let
val domT = range_type (fastype_of (fst (HOLogic.dest_prod (snd (HOLogic.dest_prod RD)))))
val measures = MeasureFunctions.get_measure_functions ctxt domT
in
measures
end
val mk_number = HOLogic.mk_nat
val dest_number = HOLogic.dest_nat
fun nums_to i = map mk_number (0 upto (i - 1))
val nth_simps = [thm "List.nth_Cons_0", thm "List.nth_Cons_Suc"]
val nth_ss = (HOL_basic_ss addsimps nth_simps)
val simp_nth_tac = simp_tac nth_ss
fun tabulate_tlist thy l =
let
val n = length (HOLogic.dest_list l)
val table = Inttab.make (map (fn i => (i, Simplifier.rewrite nth_ss (cterm_of thy (mk_nth l $ mk_number i)))) (0 upto n - 1))
in
the o Inttab.lookup table
end
val get_elem = snd o Logic.dest_equals o prop_of
fun inst_nums thy i j (t:thm) =
instantiate' [] [NONE, NONE, NONE, SOME (cterm_of thy (mk_number i)), NONE, SOME (cterm_of thy (mk_number j))] t
datatype call_fact =
NoStep of thm
| Graph of (term * thm)
fun rand (_ $ t) = t
fun setup_probe_goal ctxt domT Dtab Mtab (i, j) =
let
val css = local_clasimpset_of ctxt
val thy = ProofContext.theory_of ctxt
val RD1 = get_elem (Dtab i)
val RD2 = get_elem (Dtab j)
val Ms1 = get_elem (Mtab i)
val Ms2 = get_elem (Mtab j)
val Mst1 = HOLogic.dest_list (rand Ms1)
val Mst2 = HOLogic.dest_list (rand Ms2)
val mvar1 = Free ("sctmfv1", domT --> HOLogic.natT)
val mvar2 = Free ("sctmfv2", domT --> HOLogic.natT)
val relvar = Free ("sctmfrel", HOLogic.natT --> HOLogic.natT --> HOLogic.boolT)
val N = length Mst1 and M = length Mst2
val saved_state = HOLogic.mk_Trueprop (mk_stepP RD1 RD2 mvar1 mvar2 relvar)
|> cterm_of thy
|> Goal.init
|> auto_tac css |> Seq.hd
val no_step = saved_state
|> forall_intr (cterm_of thy relvar)
|> forall_elim (cterm_of thy (Abs ("", HOLogic.natT, Abs ("", HOLogic.natT, HOLogic.false_const))))
|> auto_tac css |> Seq.hd
in
if Thm.no_prems no_step
then NoStep (Goal.finish no_step RS no_stepI)
else
let
fun set_m1 i =
let
val M1 = nth Mst1 i
val with_m1 = saved_state
|> forall_intr (cterm_of thy mvar1)
|> forall_elim (cterm_of thy M1)
|> auto_tac css |> Seq.hd
fun set_m2 j =
let
val M2 = nth Mst2 j
val with_m2 = with_m1
|> forall_intr (cterm_of thy mvar2)
|> forall_elim (cterm_of thy M2)
|> auto_tac css |> Seq.hd
val decr = forall_intr (cterm_of thy relvar)
#> forall_elim (cterm_of thy @{const HOL.less(nat)})
#> auto_tac css #> Seq.hd
val decreq = forall_intr (cterm_of thy relvar)
#> forall_elim (cterm_of thy @{const HOL.less_eq(nat)})
#> auto_tac css #> Seq.hd
val thm1 = decr with_m2
in
if Thm.no_prems thm1
then ((rtac (inst_nums thy i j approx_less) 1) THEN (simp_nth_tac 1) THEN (rtac (Goal.finish thm1) 1))
else let val thm2 = decreq with_m2 in
if Thm.no_prems thm2
then ((rtac (inst_nums thy i j approx_leq) 1) THEN (simp_nth_tac 1) THEN (rtac (Goal.finish thm2) 1))
else all_tac end
end
in set_m2 end
val goal = HOLogic.mk_Trueprop (mk_approx (Var (("G", 0), scgT)) RD1 RD2 Ms1 Ms2)
val tac = (EVERY (map (fn n => EVERY (map (set_m1 n) (0 upto M - 1))) (0 upto N - 1)))
THEN (rtac approx_empty 1)
val approx_thm = goal
|> cterm_of thy
|> Goal.init
|> tac |> Seq.hd
|> Goal.finish
val _ $ (_ $ G $ _ $ _ $ _ $ _) = prop_of approx_thm
in
Graph (G, approx_thm)
end
end
fun mk_edge m G n = HOLogic.mk_prod (m, HOLogic.mk_prod (G, n))
fun in_graph_tac ctxt =
simp_tac (HOL_basic_ss addsimps has_edge_simps) 1
THEN (simp_tac (local_simpset_of ctxt) 1) (* FIXME reduce simpset *)
fun approx_tac _ (NoStep thm) = rtac disjI1 1 THEN rtac thm 1
| approx_tac ctxt (Graph (G, thm)) =
rtac disjI2 1
THEN rtac exI 1
THEN rtac conjI 1
THEN rtac thm 2
THEN (in_graph_tac ctxt)
fun all_less_tac [] = rtac all_less_zero 1
| all_less_tac (t :: ts) = rtac all_less_Suc 1
THEN simp_nth_tac 1
THEN t
THEN all_less_tac ts
fun mk_length l = HOLogic.size_const (fastype_of l) $ l;
val length_simps = thms "Interpretation.length_simps"
fun mk_call_graph ctxt (st : thm) =
let
val thy = ProofContext.theory_of ctxt
val _ $ _ $ RDlist $ _ = HOLogic.dest_Trueprop (hd (prems_of st))
val RDs = HOLogic.dest_list RDlist
val n = length RDs
val Mss = map (measures_of ctxt) RDs
val domT = domain_type (fastype_of (hd (hd Mss)))
val mfuns = map (fn Ms => mk_nth (HOLogic.mk_list (fastype_of (hd Ms)) Ms)) Mss
|> (fn l => HOLogic.mk_list (fastype_of (hd l)) l)
val Dtab = tabulate_tlist thy RDlist
val Mtab = tabulate_tlist thy mfuns
val len_simp = Simplifier.rewrite (HOL_basic_ss addsimps length_simps) (cterm_of thy (mk_length RDlist))
val mlens = map length Mss
val indices = (n - 1 downto 0)
val pairs = matrix indices indices
val parts = map_matrix (fn (n,m) =>
(timeap_msg (string_of_int n ^ "," ^ string_of_int m)
(setup_probe_goal ctxt domT Dtab Mtab) (n,m))) pairs
val s = fold_index (fn (i, cs) => fold_index (fn (j, Graph (G, _)) => prefix ("(" ^ string_of_int i ^ "," ^ string_of_int j ^ "): " ^
Syntax.string_of_term ctxt G ^ ",\n")
| _ => I) cs) parts ""
val _ = warning s
val ACG = map_filter (fn (Graph (G, _),(m, n)) => SOME (mk_edge (mk_number m) G (mk_number n)) | _ => NONE) (flat parts ~~ flat pairs)
|> HOLogic.mk_set (edgeT HOLogic.natT scgT)
|> curry op $ (graph_const HOLogic.natT scgT)
val sound_int_goal = HOLogic.mk_Trueprop (mk_sound_int ACG RDlist mfuns)
val tac =
unfold_tac [sound_int_def, len_simp] (local_simpset_of ctxt)
THEN all_less_tac (map (all_less_tac o map (approx_tac ctxt)) parts)
in
tac (instantiate' [] [SOME (cterm_of thy ACG), SOME (cterm_of thy mfuns)] st)
end
end