(* Title: ZF/Finite.thy
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
Finite powerset operator
*)
Finite = Inductive + Epsilon + Nat +
(*The natural numbers as a datatype*)
rep_datatype
elim natE
induct nat_induct
case_eqns nat_case_0, nat_case_succ
recursor_eqns recursor_0, recursor_succ
consts
Fin :: i=>i
FiniteFun :: [i,i]=>i ("(_ -||>/ _)" [61, 60] 60)
inductive
domains "Fin(A)" <= "Pow(A)"
intrs
emptyI "0 : Fin(A)"
consI "[| a: A; b: Fin(A) |] ==> cons(a,b) : Fin(A)"
type_intrs empty_subsetI, cons_subsetI, PowI
type_elims "[make_elim PowD]"
inductive
domains "FiniteFun(A,B)" <= "Fin(A*B)"
intrs
emptyI "0 : A -||> B"
consI "[| a: A; b: B; h: A -||> B; a ~: domain(h)
|] ==> cons(<a,b>,h) : A -||> B"
type_intrs "Fin.intrs"
end