(* Title: HOL/Tools/SMT/smt_solver.ML
Author: Sascha Boehme, TU Muenchen
SMT solvers registry and SMT tactic.
*)
signature SMT_SOLVER =
sig
(*configuration*)
datatype outcome = Unsat | Sat | Unknown
type solver_config = {
name: string,
class: SMT_Utils.class,
avail: unit -> bool,
command: unit -> string list,
options: Proof.context -> string list,
default_max_relevant: int,
supports_filter: bool,
outcome: string -> string list -> outcome * string list,
cex_parser: (Proof.context -> SMT_Translate.recon -> string list ->
term list * term list) option,
reconstruct: (Proof.context -> SMT_Translate.recon -> string list ->
int list * thm) option }
(*registry*)
val add_solver: solver_config -> theory -> theory
val solver_name_of: Proof.context -> string
val available_solvers_of: Proof.context -> string list
val apply_solver: Proof.context -> (int * (int option * thm)) list ->
int list * thm
val default_max_relevant: Proof.context -> string -> int
(*filter*)
type 'a smt_filter_data =
('a * thm) list * ((int * thm) list * Proof.context)
val smt_filter_preprocess: Proof.state ->
('a * (int option * thm)) list -> int -> 'a smt_filter_data
val smt_filter_apply: Time.time -> 'a smt_filter_data ->
{outcome: SMT_Failure.failure option, used_facts: ('a * thm) list}
(*tactic*)
val smt_tac: Proof.context -> thm list -> int -> tactic
val smt_tac': Proof.context -> thm list -> int -> tactic
(*setup*)
val setup: theory -> theory
end
structure SMT_Solver: SMT_SOLVER =
struct
(* interface to external solvers *)
local
fun make_cmd command options problem_path proof_path = space_implode " " (
map File.shell_quote (command () @ options) @
[File.shell_path problem_path, "2>&1", ">", File.shell_path proof_path])
fun trace_and ctxt msg f x =
let val _ = SMT_Config.trace_msg ctxt (fn () => msg) ()
in f x end
fun run ctxt name mk_cmd input =
(case SMT_Config.certificates_of ctxt of
NONE =>
if Config.get ctxt SMT_Config.debug_files = "" then
trace_and ctxt ("Invoking SMT solver " ^ quote name ^ " ...")
(Cache_IO.run mk_cmd) input
else
let
val base_path = Path.explode (Config.get ctxt SMT_Config.debug_files)
val in_path = Path.ext "smt_in" base_path
val out_path = Path.ext "smt_out" base_path
in Cache_IO.raw_run mk_cmd input in_path out_path end
| SOME certs =>
(case Cache_IO.lookup certs input of
(NONE, key) =>
if Config.get ctxt SMT_Config.fixed then
error ("Bad certificates cache: missing certificate")
else
Cache_IO.run_and_cache certs key mk_cmd input
| (SOME output, _) =>
trace_and ctxt ("Using cached certificate from " ^
File.shell_path (Cache_IO.cache_path_of certs) ^ " ...")
I output))
fun run_solver ctxt name mk_cmd input =
let
fun pretty tag ls = Pretty.string_of (Pretty.big_list tag
(map Pretty.str ls))
val _ = SMT_Config.trace_msg ctxt (pretty "Problem:" o split_lines) input
val {redirected_output=res, output=err, return_code} =
SMT_Config.with_timeout ctxt (run ctxt name mk_cmd) input
val _ = SMT_Config.trace_msg ctxt (pretty "Solver:") err
val ls = rev (snd (chop_while (equal "") (rev res)))
val _ = SMT_Config.trace_msg ctxt (pretty "Result:") ls
val _ = null ls andalso return_code <> 0 andalso
raise SMT_Failure.SMT (SMT_Failure.Abnormal_Termination return_code)
in ls end
fun trace_assms ctxt =
SMT_Config.trace_msg ctxt (Pretty.string_of o
Pretty.big_list "Assertions:" o map (Display.pretty_thm ctxt o snd))
fun trace_recon_data ({context=ctxt, typs, terms, ...} : SMT_Translate.recon) =
let
fun pretty_eq n p = Pretty.block [Pretty.str n, Pretty.str " = ", p]
fun p_typ (n, T) = pretty_eq n (Syntax.pretty_typ ctxt T)
fun p_term (n, t) = pretty_eq n (Syntax.pretty_term ctxt t)
in
SMT_Config.trace_msg ctxt (fn () =>
Pretty.string_of (Pretty.big_list "Names:" [
Pretty.big_list "sorts:" (map p_typ (Symtab.dest typs)),
Pretty.big_list "functions:" (map p_term (Symtab.dest terms))])) ()
end
in
fun invoke name command ithms ctxt =
let
val options = SMT_Config.solver_options_of ctxt
val comments = ("solver: " ^ name) ::
("timeout: " ^ string_of_real (Config.get ctxt SMT_Config.timeout)) ::
("random seed: " ^
string_of_int (Config.get ctxt SMT_Config.random_seed)) ::
"arguments:" :: options
val (str, recon as {context=ctxt', ...}) =
ithms
|> tap (trace_assms ctxt)
|> SMT_Translate.translate ctxt comments
||> tap trace_recon_data
in (run_solver ctxt' name (make_cmd command options) str, recon) end
end
(* configuration *)
datatype outcome = Unsat | Sat | Unknown
type solver_config = {
name: string,
class: SMT_Utils.class,
avail: unit -> bool,
command: unit -> string list,
options: Proof.context -> string list,
default_max_relevant: int,
supports_filter: bool,
outcome: string -> string list -> outcome * string list,
cex_parser: (Proof.context -> SMT_Translate.recon -> string list ->
term list * term list) option,
reconstruct: (Proof.context -> SMT_Translate.recon -> string list ->
int list * thm) option }
(* registry *)
type solver_info = {
command: unit -> string list,
default_max_relevant: int,
supports_filter: bool,
reconstruct: Proof.context -> string list * SMT_Translate.recon ->
int list * thm }
structure Solvers = Generic_Data
(
type T = solver_info Symtab.table
val empty = Symtab.empty
val extend = I
fun merge data = Symtab.merge (K true) data
)
local
fun finish outcome cex_parser reconstruct ocl outer_ctxt
(output, (recon as {context=ctxt, ...} : SMT_Translate.recon)) =
(case outcome output of
(Unsat, ls) =>
if not (Config.get ctxt SMT_Config.oracle) andalso is_some reconstruct
then the reconstruct outer_ctxt recon ls
else ([], ocl ())
| (result, ls) =>
let
val (ts, us) =
(case cex_parser of SOME f => f ctxt recon ls | _ => ([], []))
in
raise SMT_Failure.SMT (SMT_Failure.Counterexample {
is_real_cex = (result = Sat),
free_constraints = ts,
const_defs = us})
end)
val cfalse = Thm.cterm_of @{theory} (@{const Trueprop} $ @{const False})
in
fun add_solver cfg =
let
val {name, class, avail, command, options, default_max_relevant,
supports_filter, outcome, cex_parser, reconstruct} = cfg
fun core_oracle () = cfalse
fun solver ocl = {
command = command,
default_max_relevant = default_max_relevant,
supports_filter = supports_filter,
reconstruct = finish (outcome name) cex_parser reconstruct ocl }
val info = {name=name, class=class, avail=avail, options=options}
in
Thm.add_oracle (Binding.name name, core_oracle) #-> (fn (_, ocl) =>
Context.theory_map (Solvers.map (Symtab.update_new (name, solver ocl)))) #>
Context.theory_map (SMT_Config.add_solver info)
end
end
fun get_info ctxt name =
the (Symtab.lookup (Solvers.get (Context.Proof ctxt)) name)
val solver_name_of = SMT_Config.solver_of
val available_solvers_of = SMT_Config.available_solvers_of
fun name_and_info_of ctxt =
let val name = solver_name_of ctxt
in (name, get_info ctxt name) end
fun gen_preprocess ctxt iwthms = SMT_Normalize.normalize iwthms ctxt
fun gen_apply (ithms, ctxt) =
let val (name, {command, reconstruct, ...}) = name_and_info_of ctxt
in
if not (SMT_Config.is_available ctxt name) then
error ("The SMT solver " ^ quote name ^ " is not installed.")
else
(ithms, ctxt)
|-> invoke name command
|> reconstruct ctxt
|>> distinct (op =)
end
fun apply_solver ctxt = gen_apply o gen_preprocess ctxt
val default_max_relevant = #default_max_relevant oo get_info
val supports_filter = #supports_filter o snd o name_and_info_of
(* check well-sortedness *)
val has_topsort = Term.exists_type (Term.exists_subtype (fn
TFree (_, []) => true
| TVar (_, []) => true
| _ => false))
(* without this test, we would run into problems when atomizing the rules: *)
fun check_topsort iwthms =
if exists (has_topsort o Thm.prop_of o snd o snd) iwthms then
raise SMT_Failure.SMT (SMT_Failure.Other_Failure ("proof state " ^
"contains the universal sort {}"))
else ()
(* filter *)
val cnot = Thm.cterm_of @{theory} @{const Not}
fun mk_result outcome xrules = { outcome = outcome, used_facts = xrules }
type 'a smt_filter_data = ('a * thm) list * ((int * thm) list * Proof.context)
fun smt_filter_preprocess st xwthms i =
let
val ctxt =
Proof.context_of st
|> Config.put SMT_Config.oracle false
|> Config.put SMT_Config.drop_bad_facts true
|> Config.put SMT_Config.filter_only_facts true
val {facts, goal, ...} = Proof.goal st
val ({context=ctxt', prems, concl, ...}, _) = Subgoal.focus ctxt i goal
fun negate ct = Thm.dest_comb ct ||> Thm.apply cnot |-> Thm.apply
val cprop =
(case try negate (Thm.rhs_of (SMT_Normalize.atomize_conv ctxt' concl)) of
SOME ct => ct
| NONE => raise SMT_Failure.SMT (SMT_Failure.Other_Failure (
"goal is not a HOL term")))
in
map snd xwthms
|> map_index I
|> append (map (pair ~1 o pair NONE) (Thm.assume cprop :: prems @ facts))
|> tap check_topsort
|> gen_preprocess ctxt'
|> pair (map (apsnd snd) xwthms)
end
fun smt_filter_apply time_limit (xthms, (ithms, ctxt)) =
let
val ctxt' =
ctxt
|> Config.put SMT_Config.timeout (Time.toReal time_limit)
fun filter_thms false = K xthms
| filter_thms true = map_filter (try (nth xthms)) o fst
in
(ithms, ctxt')
|> gen_apply
|> filter_thms (supports_filter ctxt')
|> mk_result NONE
end
handle SMT_Failure.SMT fail => mk_result (SOME fail) []
(* SMT tactic *)
local
fun trace_assumptions ctxt iwthms idxs =
let
val wthms =
idxs
|> filter (fn i => i >= 0)
|> map_filter (AList.lookup (op =) iwthms)
in
if Config.get ctxt SMT_Config.trace_used_facts andalso length wthms > 0
then
tracing (Pretty.string_of (Pretty.big_list "SMT used facts:"
(map (Display.pretty_thm ctxt o snd) wthms)))
else ()
end
fun solve ctxt iwthms =
iwthms
|> tap check_topsort
|> apply_solver ctxt
|>> trace_assumptions ctxt iwthms
|> snd
fun str_of ctxt fail =
SMT_Failure.string_of_failure ctxt fail
|> prefix ("Solver " ^ SMT_Config.solver_of ctxt ^ ": ")
fun safe_solve ctxt iwthms = SOME (solve ctxt iwthms)
handle
SMT_Failure.SMT (fail as SMT_Failure.Counterexample _) =>
(SMT_Config.verbose_msg ctxt (str_of ctxt) fail; NONE)
| SMT_Failure.SMT (fail as SMT_Failure.Time_Out) =>
error ("SMT: Solver " ^ quote (SMT_Config.solver_of ctxt) ^ ": " ^
SMT_Failure.string_of_failure ctxt fail ^ " (setting the " ^
"configuration option " ^ quote (Config.name_of SMT_Config.timeout) ^ " might help)")
| SMT_Failure.SMT fail => error (str_of ctxt fail)
fun tag_rules thms = map_index (apsnd (pair NONE)) thms
fun tag_prems thms = map (pair ~1 o pair NONE) thms
fun resolve (SOME thm) = Tactic.rtac thm 1
| resolve NONE = no_tac
fun tac prove ctxt rules =
CONVERSION (SMT_Normalize.atomize_conv ctxt)
THEN' Tactic.rtac @{thm ccontr}
THEN' SUBPROOF (fn {context, prems, ...} =>
resolve (prove context (tag_rules rules @ tag_prems prems))) ctxt
in
val smt_tac = tac safe_solve
val smt_tac' = tac (SOME oo solve)
end
val smt_method =
Scan.optional Attrib.thms [] >>
(fn thms => fn ctxt => METHOD (fn facts =>
HEADGOAL (smt_tac ctxt (thms @ facts))))
(* setup *)
val setup =
Method.setup @{binding smt} smt_method
"Applies an SMT solver to the current goal."
end