(* Title: LCF/lcf.thy
ID: $Id$
Author: Tobias Nipkow
Copyright 1992 University of Cambridge
*)
header {* LCF on top of First-Order Logic *}
theory LCF
imports FOL
uses ("LCF_lemmas.ML") ("pair.ML") ("fix.ML")
begin
text {* This theory is based on Lawrence Paulson's book Logic and Computation. *}
subsection {* Natural Deduction Rules for LCF *}
classes cpo < "term"
defaultsort cpo
typedecl tr
typedecl void
typedecl ('a,'b) "*" (infixl 6)
typedecl ('a,'b) "+" (infixl 5)
arities
fun :: (cpo, cpo) cpo
"*" :: (cpo, cpo) cpo
"+" :: (cpo, cpo) cpo
tr :: cpo
void :: cpo
consts
UU :: "'a"
TT :: "tr"
FF :: "tr"
FIX :: "('a => 'a) => 'a"
FST :: "'a*'b => 'a"
SND :: "'a*'b => 'b"
INL :: "'a => 'a+'b"
INR :: "'b => 'a+'b"
WHEN :: "['a=>'c, 'b=>'c, 'a+'b] => 'c"
adm :: "('a => o) => o"
VOID :: "void" ("'(')")
PAIR :: "['a,'b] => 'a*'b" ("(1<_,/_>)" [0,0] 100)
COND :: "[tr,'a,'a] => 'a" ("(_ =>/ (_ |/ _))" [60,60,60] 60)
"<<" :: "['a,'a] => o" (infixl 50)
axioms
(** DOMAIN THEORY **)
eq_def: "x=y == x << y & y << x"
less_trans: "[| x << y; y << z |] ==> x << z"
less_ext: "(ALL x. f(x) << g(x)) ==> f << g"
mono: "[| f << g; x << y |] ==> f(x) << g(y)"
minimal: "UU << x"
FIX_eq: "f(FIX(f)) = FIX(f)"
(** TR **)
tr_cases: "p=UU | p=TT | p=FF"
not_TT_less_FF: "~ TT << FF"
not_FF_less_TT: "~ FF << TT"
not_TT_less_UU: "~ TT << UU"
not_FF_less_UU: "~ FF << UU"
COND_UU: "UU => x | y = UU"
COND_TT: "TT => x | y = x"
COND_FF: "FF => x | y = y"
(** PAIRS **)
surj_pairing: "<FST(z),SND(z)> = z"
FST: "FST(<x,y>) = x"
SND: "SND(<x,y>) = y"
(*** STRICT SUM ***)
INL_DEF: "~x=UU ==> ~INL(x)=UU"
INR_DEF: "~x=UU ==> ~INR(x)=UU"
INL_STRICT: "INL(UU) = UU"
INR_STRICT: "INR(UU) = UU"
WHEN_UU: "WHEN(f,g,UU) = UU"
WHEN_INL: "~x=UU ==> WHEN(f,g,INL(x)) = f(x)"
WHEN_INR: "~x=UU ==> WHEN(f,g,INR(x)) = g(x)"
SUM_EXHAUSTION:
"z = UU | (EX x. ~x=UU & z = INL(x)) | (EX y. ~y=UU & z = INR(y))"
(** VOID **)
void_cases: "(x::void) = UU"
(** INDUCTION **)
induct: "[| adm(P); P(UU); ALL x. P(x) --> P(f(x)) |] ==> P(FIX(f))"
(** Admissibility / Chain Completeness **)
(* All rules can be found on pages 199--200 of Larry's LCF book.
Note that "easiness" of types is not taken into account
because it cannot be expressed schematically; flatness could be. *)
adm_less: "adm(%x. t(x) << u(x))"
adm_not_less: "adm(%x.~ t(x) << u)"
adm_not_free: "adm(%x. A)"
adm_subst: "adm(P) ==> adm(%x. P(t(x)))"
adm_conj: "[| adm(P); adm(Q) |] ==> adm(%x. P(x)&Q(x))"
adm_disj: "[| adm(P); adm(Q) |] ==> adm(%x. P(x)|Q(x))"
adm_imp: "[| adm(%x.~P(x)); adm(Q) |] ==> adm(%x. P(x)-->Q(x))"
adm_all: "(!!y. adm(P(y))) ==> adm(%x. ALL y. P(y,x))"
ML {* use_legacy_bindings (the_context ()) *}
use "LCF_lemmas.ML"
subsection {* Ordered pairs and products *}
use "pair.ML"
subsection {* Fixedpoint theory *}
use "fix.ML"
end