(* Title: HOL/SEQ.thy Author: Jacques D. Fleuriot, University of Cambridge Author: Lawrence C Paulson Author: Jeremy Avigad Author: Brian HuffmanConvergence of sequences and series.*)header {* Sequences and Convergence *}theory SEQimports Limits RCompletebeginsubsection {* Monotone sequences and subsequences *}definition monoseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where --{*Definition of monotonicity. The use of disjunction here complicates proofs considerably. One alternative is to add a Boolean argument to indicate the direction. Another is to develop the notions of increasing and decreasing first.*} "monoseq X = ((\<forall>m. \<forall>n\<ge>m. X m \<le> X n) | (\<forall>m. \<forall>n\<ge>m. X n \<le> X m))"definition incseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where --{*Increasing sequence*} "incseq X \<longleftrightarrow> (\<forall>m. \<forall>n\<ge>m. X m \<le> X n)"definition decseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where --{*Decreasing sequence*} "decseq X \<longleftrightarrow> (\<forall>m. \<forall>n\<ge>m. X n \<le> X m)"definition subseq :: "(nat \<Rightarrow> nat) \<Rightarrow> bool" where --{*Definition of subsequence*} "subseq f \<longleftrightarrow> (\<forall>m. \<forall>n>m. f m < f n)"lemma incseq_mono: "mono f \<longleftrightarrow> incseq f" unfolding mono_def incseq_def by autolemma incseq_SucI: "(\<And>n. X n \<le> X (Suc n)) \<Longrightarrow> incseq X" using lift_Suc_mono_le[of X] by (auto simp: incseq_def)lemma incseqD: "\<And>i j. incseq f \<Longrightarrow> i \<le> j \<Longrightarrow> f i \<le> f j" by (auto simp: incseq_def)lemma incseq_SucD: "incseq A \<Longrightarrow> A i \<le> A (Suc i)" using incseqD[of A i "Suc i"] by autolemma incseq_Suc_iff: "incseq f \<longleftrightarrow> (\<forall>n. f n \<le> f (Suc n))" by (auto intro: incseq_SucI dest: incseq_SucD)lemma incseq_const[simp, intro]: "incseq (\<lambda>x. k)" unfolding incseq_def by autolemma decseq_SucI: "(\<And>n. X (Suc n) \<le> X n) \<Longrightarrow> decseq X" using order.lift_Suc_mono_le[OF dual_order, of X] by (auto simp: decseq_def)lemma decseqD: "\<And>i j. decseq f \<Longrightarrow> i \<le> j \<Longrightarrow> f j \<le> f i" by (auto simp: decseq_def)lemma decseq_SucD: "decseq A \<Longrightarrow> A (Suc i) \<le> A i" using decseqD[of A i "Suc i"] by autolemma decseq_Suc_iff: "decseq f \<longleftrightarrow> (\<forall>n. f (Suc n) \<le> f n)" by (auto intro: decseq_SucI dest: decseq_SucD)lemma decseq_const[simp, intro]: "decseq (\<lambda>x. k)" unfolding decseq_def by autolemma monoseq_iff: "monoseq X \<longleftrightarrow> incseq X \<or> decseq X" unfolding monoseq_def incseq_def decseq_def ..lemma monoseq_Suc: "monoseq X \<longleftrightarrow> (\<forall>n. X n \<le> X (Suc n)) \<or> (\<forall>n. X (Suc n) \<le> X n)" unfolding monoseq_iff incseq_Suc_iff decseq_Suc_iff ..lemma monoI1: "\<forall>m. \<forall> n \<ge> m. X m \<le> X n ==> monoseq X"by (simp add: monoseq_def)lemma monoI2: "\<forall>m. \<forall> n \<ge> m. X n \<le> X m ==> monoseq X"by (simp add: monoseq_def)lemma mono_SucI1: "\<forall>n. X n \<le> X (Suc n) ==> monoseq X"by (simp add: monoseq_Suc)lemma mono_SucI2: "\<forall>n. X (Suc n) \<le> X n ==> monoseq X"by (simp add: monoseq_Suc)lemma monoseq_minus: fixes a :: "nat \<Rightarrow> 'a::ordered_ab_group_add" assumes "monoseq a" shows "monoseq (\<lambda> n. - a n)"proof (cases "\<forall> m. \<forall> n \<ge> m. a m \<le> a n") case True hence "\<forall> m. \<forall> n \<ge> m. - a n \<le> - a m" by auto thus ?thesis by (rule monoI2)next case False hence "\<forall> m. \<forall> n \<ge> m. - a m \<le> - a n" using `monoseq a`[unfolded monoseq_def] by auto thus ?thesis by (rule monoI1)qedtext{*Subsequence (alternative definition, (e.g. Hoskins)*}lemma subseq_Suc_iff: "subseq f = (\<forall>n. (f n) < (f (Suc n)))"apply (simp add: subseq_def)apply (auto dest!: less_imp_Suc_add)apply (induct_tac k)apply (auto intro: less_trans)donetext{* for any sequence, there is a monotonic subsequence *}lemma seq_monosub: fixes s :: "nat => 'a::linorder" shows "\<exists>f. subseq f \<and> monoseq (\<lambda> n. (s (f n)))"proof cases let "?P p n" = "p > n \<and> (\<forall>m\<ge>p. s m \<le> s p)" assume *: "\<forall>n. \<exists>p. ?P p n" def f \<equiv> "nat_rec (SOME p. ?P p 0) (\<lambda>_ n. SOME p. ?P p n)" have f_0: "f 0 = (SOME p. ?P p 0)" unfolding f_def by simp have f_Suc: "\<And>i. f (Suc i) = (SOME p. ?P p (f i))" unfolding f_def nat_rec_Suc .. have P_0: "?P (f 0) 0" unfolding f_0 using *[rule_format] by (rule someI2_ex) auto have P_Suc: "\<And>i. ?P (f (Suc i)) (f i)" unfolding f_Suc using *[rule_format] by (rule someI2_ex) auto then have "subseq f" unfolding subseq_Suc_iff by auto moreover have "monoseq (\<lambda>n. s (f n))" unfolding monoseq_Suc proof (intro disjI2 allI) fix n show "s (f (Suc n)) \<le> s (f n)" proof (cases n) case 0 with P_Suc[of 0] P_0 show ?thesis by auto next case (Suc m) from P_Suc[of n] Suc have "f (Suc m) \<le> f (Suc (Suc m))" by simp with P_Suc Suc show ?thesis by simp qed qed ultimately show ?thesis by autonext let "?P p m" = "m < p \<and> s m < s p" assume "\<not> (\<forall>n. \<exists>p>n. (\<forall>m\<ge>p. s m \<le> s p))" then obtain N where N: "\<And>p. p > N \<Longrightarrow> \<exists>m>p. s p < s m" by (force simp: not_le le_less) def f \<equiv> "nat_rec (SOME p. ?P p (Suc N)) (\<lambda>_ n. SOME p. ?P p n)" have f_0: "f 0 = (SOME p. ?P p (Suc N))" unfolding f_def by simp have f_Suc: "\<And>i. f (Suc i) = (SOME p. ?P p (f i))" unfolding f_def nat_rec_Suc .. have P_0: "?P (f 0) (Suc N)" unfolding f_0 some_eq_ex[of "\<lambda>p. ?P p (Suc N)"] using N[of "Suc N"] by auto { fix i have "N < f i \<Longrightarrow> ?P (f (Suc i)) (f i)" unfolding f_Suc some_eq_ex[of "\<lambda>p. ?P p (f i)"] using N[of "f i"] . } note P' = this { fix i have "N < f i \<and> ?P (f (Suc i)) (f i)" by (induct i) (insert P_0 P', auto) } then have "subseq f" "monoseq (\<lambda>x. s (f x))" unfolding subseq_Suc_iff monoseq_Suc by (auto simp: not_le intro: less_imp_le) then show ?thesis by autoqedlemma seq_suble: assumes sf: "subseq f" shows "n \<le> f n"proof(induct n) case 0 thus ?case by simpnext case (Suc n) from sf[unfolded subseq_Suc_iff, rule_format, of n] Suc.hyps have "n < f (Suc n)" by arith thus ?case by arithqedlemma incseq_imp_monoseq: "incseq X \<Longrightarrow> monoseq X" by (simp add: incseq_def monoseq_def)lemma decseq_imp_monoseq: "decseq X \<Longrightarrow> monoseq X" by (simp add: decseq_def monoseq_def)lemma decseq_eq_incseq: fixes X :: "nat \<Rightarrow> 'a::ordered_ab_group_add" shows "decseq X = incseq (\<lambda>n. - X n)" by (simp add: decseq_def incseq_def)subsection {* Defintions of limits *}abbreviation (in topological_space) LIMSEQ :: "[nat \<Rightarrow> 'a, 'a] \<Rightarrow> bool" ("((_)/ ----> (_))" [60, 60] 60) where "X ----> L \<equiv> (X ---> L) sequentially"definition lim :: "(nat \<Rightarrow> 'a::t2_space) \<Rightarrow> 'a" where --{*Standard definition of limit using choice operator*} "lim X = (THE L. X ----> L)"definition (in topological_space) convergent :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool" where "convergent X = (\<exists>L. X ----> L)"definition Bseq :: "(nat => 'a::real_normed_vector) => bool" where --{*Standard definition for bounded sequence*} "Bseq X = (\<exists>K>0.\<forall>n. norm (X n) \<le> K)"definition (in metric_space) Cauchy :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool" where "Cauchy X = (\<forall>e>0. \<exists>M. \<forall>m \<ge> M. \<forall>n \<ge> M. dist (X m) (X n) < e)"subsection {* Bounded Sequences *}lemma BseqI': assumes K: "\<And>n. norm (X n) \<le> K" shows "Bseq X"unfolding Bseq_defproof (intro exI conjI allI) show "0 < max K 1" by simpnext fix n::nat have "norm (X n) \<le> K" by (rule K) thus "norm (X n) \<le> max K 1" by simpqedlemma BseqE: "\<lbrakk>Bseq X; \<And>K. \<lbrakk>0 < K; \<forall>n. norm (X n) \<le> K\<rbrakk> \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"unfolding Bseq_def by autolemma BseqI2': assumes K: "\<forall>n\<ge>N. norm (X n) \<le> K" shows "Bseq X"proof (rule BseqI') let ?A = "norm ` X ` {..N}" have 1: "finite ?A" by simp fix n::nat show "norm (X n) \<le> max K (Max ?A)" proof (cases rule: linorder_le_cases) assume "n \<ge> N" hence "norm (X n) \<le> K" using K by simp thus "norm (X n) \<le> max K (Max ?A)" by simp next assume "n \<le> N" hence "norm (X n) \<in> ?A" by simp with 1 have "norm (X n) \<le> Max ?A" by (rule Max_ge) thus "norm (X n) \<le> max K (Max ?A)" by simp qedqedlemma Bseq_ignore_initial_segment: "Bseq X \<Longrightarrow> Bseq (\<lambda>n. X (n + k))"unfolding Bseq_def by autolemma Bseq_offset: "Bseq (\<lambda>n. X (n + k)) \<Longrightarrow> Bseq X"apply (erule BseqE)apply (rule_tac N="k" and K="K" in BseqI2')apply clarifyapply (drule_tac x="n - k" in spec, simp)donelemma Bseq_conv_Bfun: "Bseq X \<longleftrightarrow> Bfun X sequentially"unfolding Bfun_def eventually_sequentiallyapply (rule iffI)apply (simp add: Bseq_def)apply (auto intro: BseqI2')donesubsection {* Limits of Sequences *}lemma [trans]: "X=Y ==> Y ----> z ==> X ----> z" by simplemma LIMSEQ_def: "X ----> L = (\<forall>r>0. \<exists>no. \<forall>n\<ge>no. dist (X n) L < r)"unfolding tendsto_iff eventually_sequentially ..lemma LIMSEQ_iff: fixes L :: "'a::real_normed_vector" shows "(X ----> L) = (\<forall>r>0. \<exists>no. \<forall>n \<ge> no. norm (X n - L) < r)"unfolding LIMSEQ_def dist_norm ..lemma LIMSEQ_iff_nz: "X ----> L = (\<forall>r>0. \<exists>no>0. \<forall>n\<ge>no. dist (X n) L < r)" unfolding LIMSEQ_def by (metis Suc_leD zero_less_Suc)lemma metric_LIMSEQ_I: "(\<And>r. 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. dist (X n) L < r) \<Longrightarrow> X ----> L"by (simp add: LIMSEQ_def)lemma metric_LIMSEQ_D: "\<lbrakk>X ----> L; 0 < r\<rbrakk> \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. dist (X n) L < r"by (simp add: LIMSEQ_def)lemma LIMSEQ_I: fixes L :: "'a::real_normed_vector" shows "(\<And>r. 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n - L) < r) \<Longrightarrow> X ----> L"by (simp add: LIMSEQ_iff)lemma LIMSEQ_D: fixes L :: "'a::real_normed_vector" shows "\<lbrakk>X ----> L; 0 < r\<rbrakk> \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n - L) < r"by (simp add: LIMSEQ_iff)lemma LIMSEQ_const_iff: fixes k l :: "'a::t2_space" shows "(\<lambda>n. k) ----> l \<longleftrightarrow> k = l" using trivial_limit_sequentially by (rule tendsto_const_iff)lemma LIMSEQ_ignore_initial_segment: "f ----> a \<Longrightarrow> (\<lambda>n. f (n + k)) ----> a"apply (rule topological_tendstoI)apply (drule (2) topological_tendstoD)apply (simp only: eventually_sequentially)apply (erule exE, rename_tac N)apply (rule_tac x=N in exI)apply simpdonelemma LIMSEQ_offset: "(\<lambda>n. f (n + k)) ----> a \<Longrightarrow> f ----> a"apply (rule topological_tendstoI)apply (drule (2) topological_tendstoD)apply (simp only: eventually_sequentially)apply (erule exE, rename_tac N)apply (rule_tac x="N + k" in exI)apply clarifyapply (drule_tac x="n - k" in spec)apply (simp add: le_diff_conv2)donelemma LIMSEQ_Suc: "f ----> l \<Longrightarrow> (\<lambda>n. f (Suc n)) ----> l"by (drule_tac k="Suc 0" in LIMSEQ_ignore_initial_segment, simp)lemma LIMSEQ_imp_Suc: "(\<lambda>n. f (Suc n)) ----> l \<Longrightarrow> f ----> l"by (rule_tac k="Suc 0" in LIMSEQ_offset, simp)lemma LIMSEQ_Suc_iff: "(\<lambda>n. f (Suc n)) ----> l = f ----> l"by (blast intro: LIMSEQ_imp_Suc LIMSEQ_Suc)lemma LIMSEQ_linear: "\<lbrakk> X ----> x ; l > 0 \<rbrakk> \<Longrightarrow> (\<lambda> n. X (n * l)) ----> x" unfolding tendsto_def eventually_sequentially by (metis div_le_dividend div_mult_self1_is_m le_trans nat_mult_commute)lemma LIMSEQ_unique: fixes a b :: "'a::t2_space" shows "\<lbrakk>X ----> a; X ----> b\<rbrakk> \<Longrightarrow> a = b" using trivial_limit_sequentially by (rule tendsto_unique)lemma increasing_LIMSEQ: fixes f :: "nat \<Rightarrow> real" assumes inc: "!!n. f n \<le> f (Suc n)" and bdd: "!!n. f n \<le> l" and en: "!!e. 0 < e \<Longrightarrow> \<exists>n. l \<le> f n + e" shows "f ----> l"proof (auto simp add: LIMSEQ_def) fix e :: real assume e: "0 < e" then obtain N where "l \<le> f N + e/2" by (metis half_gt_zero e en that) hence N: "l < f N + e" using e by simp { fix k have [simp]: "!!n. \<bar>f n - l\<bar> = l - f n" by (simp add: bdd) have "\<bar>f (N+k) - l\<bar> < e" proof (induct k) case 0 show ?case using N by simp next case (Suc k) thus ?case using N inc [of "N+k"] by simp qed } note 1 = this { fix n have "N \<le> n \<Longrightarrow> \<bar>f n - l\<bar> < e" using 1 [of "n-N"] by simp } note [intro] = this show " \<exists>no. \<forall>n\<ge>no. dist (f n) l < e" by (auto simp add: dist_real_def) qedlemma Bseq_inverse_lemma: fixes x :: "'a::real_normed_div_algebra" shows "\<lbrakk>r \<le> norm x; 0 < r\<rbrakk> \<Longrightarrow> norm (inverse x) \<le> inverse r"apply (subst nonzero_norm_inverse, clarsimp)apply (erule (1) le_imp_inverse_le)donelemma Bseq_inverse: fixes a :: "'a::real_normed_div_algebra" shows "\<lbrakk>X ----> a; a \<noteq> 0\<rbrakk> \<Longrightarrow> Bseq (\<lambda>n. inverse (X n))"unfolding Bseq_conv_Bfun by (rule Bfun_inverse)lemma LIMSEQ_diff_approach_zero: fixes L :: "'a::real_normed_vector" shows "g ----> L ==> (%x. f x - g x) ----> 0 ==> f ----> L" by (drule (1) tendsto_add, simp)lemma LIMSEQ_diff_approach_zero2: fixes L :: "'a::real_normed_vector" shows "f ----> L ==> (%x. f x - g x) ----> 0 ==> g ----> L" by (drule (1) tendsto_diff, simp)text{*An unbounded sequence's inverse tends to 0*}lemma LIMSEQ_inverse_zero: "\<forall>r::real. \<exists>N. \<forall>n\<ge>N. r < X n \<Longrightarrow> (\<lambda>n. inverse (X n)) ----> 0"apply (rule LIMSEQ_I)apply (drule_tac x="inverse r" in spec, safe)apply (rule_tac x="N" in exI, safe)apply (drule_tac x="n" in spec, safe)apply (frule positive_imp_inverse_positive)apply (frule (1) less_imp_inverse_less)apply (subgoal_tac "0 < X n", simp)apply (erule (1) order_less_trans)donetext{*The sequence @{term "1/n"} tends to 0 as @{term n} tends to infinity*}lemma LIMSEQ_inverse_real_of_nat: "(%n. inverse(real(Suc n))) ----> 0"apply (rule LIMSEQ_inverse_zero, safe)apply (cut_tac x = r in reals_Archimedean2)apply (safe, rule_tac x = n in exI)apply (auto simp add: real_of_nat_Suc)donetext{*The sequence @{term "r + 1/n"} tends to @{term r} as @{term n} tends toinfinity is now easily proved*}lemma LIMSEQ_inverse_real_of_nat_add: "(%n. r + inverse(real(Suc n))) ----> r" using tendsto_add [OF tendsto_const LIMSEQ_inverse_real_of_nat] by autolemma LIMSEQ_inverse_real_of_nat_add_minus: "(%n. r + -inverse(real(Suc n))) ----> r" using tendsto_add [OF tendsto_const tendsto_minus [OF LIMSEQ_inverse_real_of_nat]] by autolemma LIMSEQ_inverse_real_of_nat_add_minus_mult: "(%n. r*( 1 + -inverse(real(Suc n)))) ----> r" using tendsto_mult [OF tendsto_const LIMSEQ_inverse_real_of_nat_add_minus [of 1]] by autolemma LIMSEQ_le_const: "\<lbrakk>X ----> (x::real); \<exists>N. \<forall>n\<ge>N. a \<le> X n\<rbrakk> \<Longrightarrow> a \<le> x"apply (rule ccontr, simp only: linorder_not_le)apply (drule_tac r="a - x" in LIMSEQ_D, simp)apply clarsimpapply (drule_tac x="max N no" in spec, drule mp, rule le_maxI1)apply (drule_tac x="max N no" in spec, drule mp, rule le_maxI2)apply simpdonelemma LIMSEQ_le_const2: "\<lbrakk>X ----> (x::real); \<exists>N. \<forall>n\<ge>N. X n \<le> a\<rbrakk> \<Longrightarrow> x \<le> a"apply (subgoal_tac "- a \<le> - x", simp)apply (rule LIMSEQ_le_const)apply (erule tendsto_minus)apply simpdonelemma LIMSEQ_le: "\<lbrakk>X ----> x; Y ----> y; \<exists>N. \<forall>n\<ge>N. X n \<le> Y n\<rbrakk> \<Longrightarrow> x \<le> (y::real)"apply (subgoal_tac "0 \<le> y - x", simp)apply (rule LIMSEQ_le_const)apply (erule (1) tendsto_diff)apply (simp add: le_diff_eq)donesubsection {* Convergence *}lemma limI: "X ----> L ==> lim X = L"apply (simp add: lim_def)apply (blast intro: LIMSEQ_unique)donelemma convergentD: "convergent X ==> \<exists>L. (X ----> L)"by (simp add: convergent_def)lemma convergentI: "(X ----> L) ==> convergent X"by (auto simp add: convergent_def)lemma convergent_LIMSEQ_iff: "convergent X = (X ----> lim X)"by (auto intro: theI LIMSEQ_unique simp add: convergent_def lim_def)lemma convergent_const: "convergent (\<lambda>n. c)" by (rule convergentI, rule tendsto_const)lemma convergent_add: fixes X Y :: "nat \<Rightarrow> 'a::real_normed_vector" assumes "convergent (\<lambda>n. X n)" assumes "convergent (\<lambda>n. Y n)" shows "convergent (\<lambda>n. X n + Y n)" using assms unfolding convergent_def by (fast intro: tendsto_add)lemma convergent_setsum: fixes X :: "'a \<Rightarrow> nat \<Rightarrow> 'b::real_normed_vector" assumes "\<And>i. i \<in> A \<Longrightarrow> convergent (\<lambda>n. X i n)" shows "convergent (\<lambda>n. \<Sum>i\<in>A. X i n)"proof (cases "finite A") case True from this and assms show ?thesis by (induct A set: finite) (simp_all add: convergent_const convergent_add)qed (simp add: convergent_const)lemma (in bounded_linear) convergent: assumes "convergent (\<lambda>n. X n)" shows "convergent (\<lambda>n. f (X n))" using assms unfolding convergent_def by (fast intro: tendsto)lemma (in bounded_bilinear) convergent: assumes "convergent (\<lambda>n. X n)" and "convergent (\<lambda>n. Y n)" shows "convergent (\<lambda>n. X n ** Y n)" using assms unfolding convergent_def by (fast intro: tendsto)lemma convergent_minus_iff: fixes X :: "nat \<Rightarrow> 'a::real_normed_vector" shows "convergent X \<longleftrightarrow> convergent (\<lambda>n. - X n)"apply (simp add: convergent_def)apply (auto dest: tendsto_minus)apply (drule tendsto_minus, auto)donelemma lim_le: fixes x :: real assumes f: "convergent f" and fn_le: "!!n. f n \<le> x" shows "lim f \<le> x"proof (rule classical) assume "\<not> lim f \<le> x" hence 0: "0 < lim f - x" by arith have 1: "f----> lim f" by (metis convergent_LIMSEQ_iff f) thus ?thesis proof (simp add: LIMSEQ_iff) assume "\<forall>r>0. \<exists>no. \<forall>n\<ge>no. \<bar>f n - lim f\<bar> < r" hence "\<exists>no. \<forall>n\<ge>no. \<bar>f n - lim f\<bar> < lim f - x" by (metis 0) from this obtain no where "\<forall>n\<ge>no. \<bar>f n - lim f\<bar> < lim f - x" by blast thus "lim f \<le> x" by (metis 1 LIMSEQ_le_const2 fn_le) qedqedlemma monoseq_le: fixes a :: "nat \<Rightarrow> real" assumes "monoseq a" and "a ----> x" shows "((\<forall> n. a n \<le> x) \<and> (\<forall>m. \<forall>n\<ge>m. a m \<le> a n)) \<or> ((\<forall> n. x \<le> a n) \<and> (\<forall>m. \<forall>n\<ge>m. a n \<le> a m))"proof - { fix x n fix a :: "nat \<Rightarrow> real" assume "a ----> x" and "\<forall> m. \<forall> n \<ge> m. a m \<le> a n" hence monotone: "\<And> m n. m \<le> n \<Longrightarrow> a m \<le> a n" by auto have "a n \<le> x" proof (rule ccontr) assume "\<not> a n \<le> x" hence "x < a n" by auto hence "0 < a n - x" by auto from `a ----> x`[THEN LIMSEQ_D, OF this] obtain no where "\<And>n'. no \<le> n' \<Longrightarrow> norm (a n' - x) < a n - x" by blast hence "norm (a (max no n) - x) < a n - x" by auto moreover { fix n' have "n \<le> n' \<Longrightarrow> x < a n'" using monotone[where m=n and n=n'] and `x < a n` by auto } hence "x < a (max no n)" by auto ultimately have "a (max no n) < a n" by auto with monotone[where m=n and n="max no n"] show False by (auto simp:max_def split:split_if_asm) qed } note top_down = this { fix x n m fix a :: "nat \<Rightarrow> real" assume "a ----> x" and "monoseq a" and "a m < x" have "a n \<le> x \<and> (\<forall> m. \<forall> n \<ge> m. a m \<le> a n)" proof (cases "\<forall> m. \<forall> n \<ge> m. a m \<le> a n") case True with top_down and `a ----> x` show ?thesis by auto next case False with `monoseq a`[unfolded monoseq_def] have "\<forall> m. \<forall> n \<ge> m. - a m \<le> - a n" by auto hence "- a m \<le> - x" using top_down[OF tendsto_minus[OF `a ----> x`]] by blast hence False using `a m < x` by auto thus ?thesis .. qed } note when_decided = this show ?thesis proof (cases "\<exists> m. a m \<noteq> x") case True then obtain m where "a m \<noteq> x" by auto show ?thesis proof (cases "a m < x") case True with when_decided[OF `a ----> x` `monoseq a`, where m2=m] show ?thesis by blast next case False hence "- a m < - x" using `a m \<noteq> x` by auto with when_decided[OF tendsto_minus[OF `a ----> x`] monoseq_minus[OF `monoseq a`], where m2=m] show ?thesis by auto qed qed autoqedlemma LIMSEQ_subseq_LIMSEQ: "\<lbrakk> X ----> L; subseq f \<rbrakk> \<Longrightarrow> (X o f) ----> L"apply (rule topological_tendstoI)apply (drule (2) topological_tendstoD)apply (simp only: eventually_sequentially)apply (clarify, rule_tac x=N in exI, clarsimp)apply (blast intro: seq_suble le_trans dest!: spec) donelemma convergent_subseq_convergent: "\<lbrakk>convergent X; subseq f\<rbrakk> \<Longrightarrow> convergent (X o f)" unfolding convergent_def by (auto intro: LIMSEQ_subseq_LIMSEQ)subsection {* Bounded Monotonic Sequences *}text{*Bounded Sequence*}lemma BseqD: "Bseq X ==> \<exists>K. 0 < K & (\<forall>n. norm (X n) \<le> K)"by (simp add: Bseq_def)lemma BseqI: "[| 0 < K; \<forall>n. norm (X n) \<le> K |] ==> Bseq X"by (auto simp add: Bseq_def)lemma lemma_NBseq_def: "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) = (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))"proof auto fix K :: real from reals_Archimedean2 obtain n :: nat where "K < real n" .. then have "K \<le> real (Suc n)" by auto assume "\<forall>m. norm (X m) \<le> K" have "\<forall>m. norm (X m) \<le> real (Suc n)" proof fix m :: 'a from `\<forall>m. norm (X m) \<le> K` have "norm (X m) \<le> K" .. with `K \<le> real (Suc n)` show "norm (X m) \<le> real (Suc n)" by auto qed then show "\<exists>N. \<forall>n. norm (X n) \<le> real (Suc N)" ..next fix N :: nat have "real (Suc N) > 0" by (simp add: real_of_nat_Suc) moreover assume "\<forall>n. norm (X n) \<le> real (Suc N)" ultimately show "\<exists>K>0. \<forall>n. norm (X n) \<le> K" by blastqedtext{* alternative definition for Bseq *}lemma Bseq_iff: "Bseq X = (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))"apply (simp add: Bseq_def)apply (simp (no_asm) add: lemma_NBseq_def)donelemma lemma_NBseq_def2: "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) = (\<exists>N. \<forall>n. norm (X n) < real(Suc N))"apply (subst lemma_NBseq_def, auto)apply (rule_tac x = "Suc N" in exI)apply (rule_tac [2] x = N in exI)apply (auto simp add: real_of_nat_Suc) prefer 2 apply (blast intro: order_less_imp_le)apply (drule_tac x = n in spec, simp)done(* yet another definition for Bseq *)lemma Bseq_iff1a: "Bseq X = (\<exists>N. \<forall>n. norm (X n) < real(Suc N))"by (simp add: Bseq_def lemma_NBseq_def2)subsubsection{*Upper Bounds and Lubs of Bounded Sequences*}lemma Bseq_isUb: "!!(X::nat=>real). Bseq X ==> \<exists>U. isUb (UNIV::real set) {x. \<exists>n. X n = x} U"by (auto intro: isUbI setleI simp add: Bseq_def abs_le_iff)text{* Use completeness of reals (supremum property) to show that any bounded sequence has a least upper bound*}lemma Bseq_isLub: "!!(X::nat=>real). Bseq X ==> \<exists>U. isLub (UNIV::real set) {x. \<exists>n. X n = x} U"by (blast intro: reals_complete Bseq_isUb)subsubsection{*A Bounded and Monotonic Sequence Converges*}(* TODO: delete *)(* FIXME: one use in NSA/HSEQ.thy *)lemma Bmonoseq_LIMSEQ: "\<forall>n. m \<le> n --> X n = X m ==> \<exists>L. (X ----> L)"unfolding tendsto_def eventually_sequentiallyapply (rule_tac x = "X m" in exI, safe)apply (rule_tac x = m in exI, safe)apply (drule spec, erule impE, auto)donetext {* A monotone sequence converges to its least upper bound. *}lemma isLub_mono_imp_LIMSEQ: fixes X :: "nat \<Rightarrow> real" assumes u: "isLub UNIV {x. \<exists>n. X n = x} u" (* FIXME: use 'range X' *) assumes X: "\<forall>m n. m \<le> n \<longrightarrow> X m \<le> X n" shows "X ----> u"proof (rule LIMSEQ_I) have 1: "\<forall>n. X n \<le> u" using isLubD2 [OF u] by auto have "\<forall>y. (\<forall>n. X n \<le> y) \<longrightarrow> u \<le> y" using isLub_le_isUb [OF u] by (auto simp add: isUb_def setle_def) hence 2: "\<forall>y<u. \<exists>n. y < X n" by (metis not_le) fix r :: real assume "0 < r" hence "u - r < u" by simp hence "\<exists>m. u - r < X m" using 2 by simp then obtain m where "u - r < X m" .. with X have "\<forall>n\<ge>m. u - r < X n" by (fast intro: less_le_trans) hence "\<exists>m. \<forall>n\<ge>m. u - r < X n" .. thus "\<exists>m. \<forall>n\<ge>m. norm (X n - u) < r" using 1 by (simp add: diff_less_eq add_commute)qedtext{*A standard proof of the theorem for monotone increasing sequence*}lemma Bseq_mono_convergent: "[| Bseq X; \<forall>m. \<forall>n \<ge> m. X m \<le> X n |] ==> convergent (X::nat=>real)"proof - assume "Bseq X" then obtain u where u: "isLub UNIV {x. \<exists>n. X n = x} u" using Bseq_isLub by fast assume "\<forall>m n. m \<le> n \<longrightarrow> X m \<le> X n" with u have "X ----> u" by (rule isLub_mono_imp_LIMSEQ) thus "convergent X" by (rule convergentI)qedlemma Bseq_minus_iff: "Bseq (%n. -(X n)) = Bseq X"by (simp add: Bseq_def)text{*Main monotonicity theorem*}lemma Bseq_monoseq_convergent: "[| Bseq X; monoseq X |] ==> convergent (X::nat\<Rightarrow>real)"apply (simp add: monoseq_def, safe)apply (rule_tac [2] convergent_minus_iff [THEN ssubst])apply (drule_tac [2] Bseq_minus_iff [THEN ssubst])apply (auto intro!: Bseq_mono_convergent)donesubsubsection{*Increasing and Decreasing Series*}lemma incseq_le: fixes X :: "nat \<Rightarrow> real" assumes inc: "incseq X" and lim: "X ----> L" shows "X n \<le> L" using monoseq_le [OF incseq_imp_monoseq [OF inc] lim]proof assume "(\<forall>n. X n \<le> L) \<and> (\<forall>m n. m \<le> n \<longrightarrow> X m \<le> X n)" thus ?thesis by simpnext assume "(\<forall>n. L \<le> X n) \<and> (\<forall>m n. m \<le> n \<longrightarrow> X n \<le> X m)" hence const: "(!!m n. m \<le> n \<Longrightarrow> X n = X m)" using inc by (auto simp add: incseq_def intro: order_antisym) have X: "!!n. X n = X 0" by (blast intro: const [of 0]) have "X = (\<lambda>n. X 0)" by (blast intro: X) hence "L = X 0" using tendsto_const [of "X 0" sequentially] by (auto intro: LIMSEQ_unique lim) thus ?thesis by (blast intro: eq_refl X)qedlemma decseq_le: fixes X :: "nat \<Rightarrow> real" assumes dec: "decseq X" and lim: "X ----> L" shows "L \<le> X n"proof - have inc: "incseq (\<lambda>n. - X n)" using dec by (simp add: decseq_eq_incseq) have "- X n \<le> - L" by (blast intro: incseq_le [OF inc] tendsto_minus lim) thus ?thesis by simpqedsubsubsection{*A Few More Equivalence Theorems for Boundedness*}text{*alternative formulation for boundedness*}lemma Bseq_iff2: "Bseq X = (\<exists>k > 0. \<exists>x. \<forall>n. norm (X(n) + -x) \<le> k)"apply (unfold Bseq_def, safe)apply (rule_tac [2] x = "k + norm x" in exI)apply (rule_tac x = K in exI, simp)apply (rule exI [where x = 0], auto)apply (erule order_less_le_trans, simp)apply (drule_tac x=n in spec, fold diff_minus)apply (drule order_trans [OF norm_triangle_ineq2])apply simpdonetext{*alternative formulation for boundedness*}lemma Bseq_iff3: "Bseq X = (\<exists>k > 0. \<exists>N. \<forall>n. norm(X(n) + -X(N)) \<le> k)"apply safeapply (simp add: Bseq_def, safe)apply (rule_tac x = "K + norm (X N)" in exI)apply autoapply (erule order_less_le_trans, simp)apply (rule_tac x = N in exI, safe)apply (drule_tac x = n in spec)apply (rule order_trans [OF norm_triangle_ineq], simp)apply (auto simp add: Bseq_iff2)donelemma BseqI2: "(\<forall>n. k \<le> f n & f n \<le> (K::real)) ==> Bseq f"apply (simp add: Bseq_def)apply (rule_tac x = " (\<bar>k\<bar> + \<bar>K\<bar>) + 1" in exI, auto)apply (drule_tac x = n in spec, arith)donesubsection {* Cauchy Sequences *}lemma metric_CauchyI: "(\<And>e. 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (X m) (X n) < e) \<Longrightarrow> Cauchy X"by (simp add: Cauchy_def)lemma metric_CauchyD: "\<lbrakk>Cauchy X; 0 < e\<rbrakk> \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (X m) (X n) < e"by (simp add: Cauchy_def)lemma Cauchy_iff: fixes X :: "nat \<Rightarrow> 'a::real_normed_vector" shows "Cauchy X \<longleftrightarrow> (\<forall>e>0. \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e)"unfolding Cauchy_def dist_norm ..lemma Cauchy_iff2: "Cauchy X = (\<forall>j. (\<exists>M. \<forall>m \<ge> M. \<forall>n \<ge> M. \<bar>X m - X n\<bar> < inverse(real (Suc j))))"apply (simp add: Cauchy_iff, auto)apply (drule reals_Archimedean, safe)apply (drule_tac x = n in spec, auto)apply (rule_tac x = M in exI, auto)apply (drule_tac x = m in spec, simp)apply (drule_tac x = na in spec, auto)donelemma CauchyI: fixes X :: "nat \<Rightarrow> 'a::real_normed_vector" shows "(\<And>e. 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e) \<Longrightarrow> Cauchy X"by (simp add: Cauchy_iff)lemma CauchyD: fixes X :: "nat \<Rightarrow> 'a::real_normed_vector" shows "\<lbrakk>Cauchy X; 0 < e\<rbrakk> \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e"by (simp add: Cauchy_iff)lemma Cauchy_subseq_Cauchy: "\<lbrakk> Cauchy X; subseq f \<rbrakk> \<Longrightarrow> Cauchy (X o f)"apply (auto simp add: Cauchy_def)apply (drule_tac x=e in spec, clarify)apply (rule_tac x=M in exI, clarify)apply (blast intro: le_trans [OF _ seq_suble] dest!: spec)donesubsubsection {* Cauchy Sequences are Bounded *}text{*A Cauchy sequence is bounded -- this is the standard proof mechanization rather than the nonstandard proof*}lemma lemmaCauchy: "\<forall>n \<ge> M. norm (X M - X n) < (1::real) ==> \<forall>n \<ge> M. norm (X n :: 'a::real_normed_vector) < 1 + norm (X M)"apply (clarify, drule spec, drule (1) mp)apply (simp only: norm_minus_commute)apply (drule order_le_less_trans [OF norm_triangle_ineq2])apply simpdonelemma Cauchy_Bseq: "Cauchy X ==> Bseq X"apply (simp add: Cauchy_iff)apply (drule spec, drule mp, rule zero_less_one, safe)apply (drule_tac x="M" in spec, simp)apply (drule lemmaCauchy)apply (rule_tac k="M" in Bseq_offset)apply (simp add: Bseq_def)apply (rule_tac x="1 + norm (X M)" in exI)apply (rule conjI, rule order_less_le_trans [OF zero_less_one], simp)apply (simp add: order_less_imp_le)donesubsubsection {* Cauchy Sequences are Convergent *}class complete_space = metric_space + assumes Cauchy_convergent: "Cauchy X \<Longrightarrow> convergent X"class banach = real_normed_vector + complete_spacetheorem LIMSEQ_imp_Cauchy: assumes X: "X ----> a" shows "Cauchy X"proof (rule metric_CauchyI) fix e::real assume "0 < e" hence "0 < e/2" by simp with X have "\<exists>N. \<forall>n\<ge>N. dist (X n) a < e/2" by (rule metric_LIMSEQ_D) then obtain N where N: "\<forall>n\<ge>N. dist (X n) a < e/2" .. show "\<exists>N. \<forall>m\<ge>N. \<forall>n\<ge>N. dist (X m) (X n) < e" proof (intro exI allI impI) fix m assume "N \<le> m" hence m: "dist (X m) a < e/2" using N by fast fix n assume "N \<le> n" hence n: "dist (X n) a < e/2" using N by fast have "dist (X m) (X n) \<le> dist (X m) a + dist (X n) a" by (rule dist_triangle2) also from m n have "\<dots> < e" by simp finally show "dist (X m) (X n) < e" . qedqedlemma convergent_Cauchy: "convergent X \<Longrightarrow> Cauchy X"unfolding convergent_defby (erule exE, erule LIMSEQ_imp_Cauchy)lemma Cauchy_convergent_iff: fixes X :: "nat \<Rightarrow> 'a::complete_space" shows "Cauchy X = convergent X"by (fast intro: Cauchy_convergent convergent_Cauchy)text {*Proof that Cauchy sequences converge based on the one fromhttp://pirate.shu.edu/~wachsmut/ira/numseq/proofs/cauconv.html*}text {* If sequence @{term "X"} is Cauchy, then its limit is the lub of @{term "{r::real. \<exists>N. \<forall>n\<ge>N. r < X n}"}*}lemma isUb_UNIV_I: "(\<And>y. y \<in> S \<Longrightarrow> y \<le> u) \<Longrightarrow> isUb UNIV S u"by (simp add: isUbI setleI)locale real_Cauchy = fixes X :: "nat \<Rightarrow> real" assumes X: "Cauchy X" fixes S :: "real set" defines S_def: "S \<equiv> {x::real. \<exists>N. \<forall>n\<ge>N. x < X n}"lemma real_CauchyI: assumes "Cauchy X" shows "real_Cauchy X" proof qed (fact assms)lemma (in real_Cauchy) mem_S: "\<forall>n\<ge>N. x < X n \<Longrightarrow> x \<in> S"by (unfold S_def, auto)lemma (in real_Cauchy) bound_isUb: assumes N: "\<forall>n\<ge>N. X n < x" shows "isUb UNIV S x"proof (rule isUb_UNIV_I) fix y::real assume "y \<in> S" hence "\<exists>M. \<forall>n\<ge>M. y < X n" by (simp add: S_def) then obtain M where "\<forall>n\<ge>M. y < X n" .. hence "y < X (max M N)" by simp also have "\<dots> < x" using N by simp finally show "y \<le> x" by (rule order_less_imp_le)qedlemma (in real_Cauchy) isLub_ex: "\<exists>u. isLub UNIV S u"proof (rule reals_complete) obtain N where "\<forall>m\<ge>N. \<forall>n\<ge>N. norm (X m - X n) < 1" using CauchyD [OF X zero_less_one] by auto hence N: "\<forall>n\<ge>N. norm (X n - X N) < 1" by simp show "\<exists>x. x \<in> S" proof from N have "\<forall>n\<ge>N. X N - 1 < X n" by (simp add: abs_diff_less_iff) thus "X N - 1 \<in> S" by (rule mem_S) qed show "\<exists>u. isUb UNIV S u" proof from N have "\<forall>n\<ge>N. X n < X N + 1" by (simp add: abs_diff_less_iff) thus "isUb UNIV S (X N + 1)" by (rule bound_isUb) qedqedlemma (in real_Cauchy) isLub_imp_LIMSEQ: assumes x: "isLub UNIV S x" shows "X ----> x"proof (rule LIMSEQ_I) fix r::real assume "0 < r" hence r: "0 < r/2" by simp obtain N where "\<forall>n\<ge>N. \<forall>m\<ge>N. norm (X n - X m) < r/2" using CauchyD [OF X r] by auto hence "\<forall>n\<ge>N. norm (X n - X N) < r/2" by simp hence N: "\<forall>n\<ge>N. X N - r/2 < X n \<and> X n < X N + r/2" by (simp only: real_norm_def abs_diff_less_iff) from N have "\<forall>n\<ge>N. X N - r/2 < X n" by fast hence "X N - r/2 \<in> S" by (rule mem_S) hence 1: "X N - r/2 \<le> x" using x isLub_isUb isUbD by fast from N have "\<forall>n\<ge>N. X n < X N + r/2" by fast hence "isUb UNIV S (X N + r/2)" by (rule bound_isUb) hence 2: "x \<le> X N + r/2" using x isLub_le_isUb by fast show "\<exists>N. \<forall>n\<ge>N. norm (X n - x) < r" proof (intro exI allI impI) fix n assume n: "N \<le> n" from N n have "X n < X N + r/2" and "X N - r/2 < X n" by simp+ thus "norm (X n - x) < r" using 1 2 by (simp add: abs_diff_less_iff) qedqedlemma (in real_Cauchy) LIMSEQ_ex: "\<exists>x. X ----> x"proof - obtain x where "isLub UNIV S x" using isLub_ex by fast hence "X ----> x" by (rule isLub_imp_LIMSEQ) thus ?thesis ..qedlemma real_Cauchy_convergent: fixes X :: "nat \<Rightarrow> real" shows "Cauchy X \<Longrightarrow> convergent X"unfolding convergent_defby (rule real_Cauchy.LIMSEQ_ex) (rule real_CauchyI)instance real :: banachby intro_classes (rule real_Cauchy_convergent)subsection {* Power Sequences *}text{*The sequence @{term "x^n"} tends to 0 if @{term "0\<le>x"} and @{term"x<1"}. Proof will use (NS) Cauchy equivalence for convergence and also fact that bounded and monotonic sequence converges.*}lemma Bseq_realpow: "[| 0 \<le> (x::real); x \<le> 1 |] ==> Bseq (%n. x ^ n)"apply (simp add: Bseq_def)apply (rule_tac x = 1 in exI)apply (simp add: power_abs)apply (auto dest: power_mono)donelemma monoseq_realpow: fixes x :: real shows "[| 0 \<le> x; x \<le> 1 |] ==> monoseq (%n. x ^ n)"apply (clarify intro!: mono_SucI2)apply (cut_tac n = n and N = "Suc n" and a = x in power_decreasing, auto)donelemma convergent_realpow: "[| 0 \<le> (x::real); x \<le> 1 |] ==> convergent (%n. x ^ n)"by (blast intro!: Bseq_monoseq_convergent Bseq_realpow monoseq_realpow)lemma LIMSEQ_inverse_realpow_zero_lemma: fixes x :: real assumes x: "0 \<le> x" shows "real n * x + 1 \<le> (x + 1) ^ n"apply (induct n)apply simpapply simpapply (rule order_trans)prefer 2apply (erule mult_left_mono)apply (rule add_increasing [OF x], simp)apply (simp add: real_of_nat_Suc)apply (simp add: ring_distribs)apply (simp add: mult_nonneg_nonneg x)donelemma LIMSEQ_inverse_realpow_zero: "1 < (x::real) \<Longrightarrow> (\<lambda>n. inverse (x ^ n)) ----> 0"proof (rule LIMSEQ_inverse_zero [rule_format]) fix y :: real assume x: "1 < x" hence "0 < x - 1" by simp hence "\<forall>y. \<exists>N::nat. y < real N * (x - 1)" by (rule reals_Archimedean3) hence "\<exists>N::nat. y < real N * (x - 1)" .. then obtain N::nat where "y < real N * (x - 1)" .. also have "\<dots> \<le> real N * (x - 1) + 1" by simp also have "\<dots> \<le> (x - 1 + 1) ^ N" by (rule LIMSEQ_inverse_realpow_zero_lemma, cut_tac x, simp) also have "\<dots> = x ^ N" by simp finally have "y < x ^ N" . hence "\<forall>n\<ge>N. y < x ^ n" apply clarify apply (erule order_less_le_trans) apply (erule power_increasing) apply (rule order_less_imp_le [OF x]) done thus "\<exists>N. \<forall>n\<ge>N. y < x ^ n" ..qedlemma LIMSEQ_realpow_zero: "\<lbrakk>0 \<le> (x::real); x < 1\<rbrakk> \<Longrightarrow> (\<lambda>n. x ^ n) ----> 0"proof (cases) assume "x = 0" hence "(\<lambda>n. x ^ Suc n) ----> 0" by (simp add: tendsto_const) thus ?thesis by (rule LIMSEQ_imp_Suc)next assume "0 \<le> x" and "x \<noteq> 0" hence x0: "0 < x" by simp assume x1: "x < 1" from x0 x1 have "1 < inverse x" by (rule one_less_inverse) hence "(\<lambda>n. inverse (inverse x ^ n)) ----> 0" by (rule LIMSEQ_inverse_realpow_zero) thus ?thesis by (simp add: power_inverse)qedlemma LIMSEQ_power_zero: fixes x :: "'a::{real_normed_algebra_1}" shows "norm x < 1 \<Longrightarrow> (\<lambda>n. x ^ n) ----> 0"apply (drule LIMSEQ_realpow_zero [OF norm_ge_zero])apply (simp only: tendsto_Zfun_iff, erule Zfun_le)apply (simp add: power_abs norm_power_ineq)donelemma LIMSEQ_divide_realpow_zero: "1 < (x::real) ==> (%n. a / (x ^ n)) ----> 0"using tendsto_mult [OF tendsto_const [of a] LIMSEQ_realpow_zero [of "inverse x"]]apply (auto simp add: divide_inverse power_inverse)apply (simp add: inverse_eq_divide pos_divide_less_eq)donetext{*Limit of @{term "c^n"} for @{term"\<bar>c\<bar> < 1"}*}lemma LIMSEQ_rabs_realpow_zero: "\<bar>c\<bar> < (1::real) ==> (%n. \<bar>c\<bar> ^ n) ----> 0"by (rule LIMSEQ_realpow_zero [OF abs_ge_zero])lemma LIMSEQ_rabs_realpow_zero2: "\<bar>c\<bar> < (1::real) ==> (%n. c ^ n) ----> 0"apply (rule tendsto_rabs_zero_cancel)apply (auto intro: LIMSEQ_rabs_realpow_zero simp add: power_abs)doneend