| author | wenzelm |
| Mon, 17 Dec 2012 14:07:34 +0100 | |
| changeset 50575 | ae1da46022d1 |
| parent 48985 | 5386df44a037 |
| child 58860 | fee7cfa69c50 |
| permissions | -rw-r--r-- |
(*<*) theory Ifexpr imports Main begin; (*>*) subsection{*Case Study: Boolean Expressions*} text{*\label{sec:boolex}\index{boolean expressions example|(} The aim of this case study is twofold: it shows how to model boolean expressions and some algorithms for manipulating them, and it demonstrates the constructs introduced above. *} subsubsection{*Modelling Boolean Expressions*} text{* We want to represent boolean expressions built up from variables and constants by negation and conjunction. The following datatype serves exactly that purpose: *} datatype boolex = Const bool | Var nat | Neg boolex | And boolex boolex; text{*\noindent The two constants are represented by @{term"Const True"} and @{term"Const False"}. Variables are represented by terms of the form @{term"Var n"}, where @{term"n"} is a natural number (type @{typ"nat"}). For example, the formula $P@0 \land \neg P@1$ is represented by the term @{term"And (Var 0) (Neg(Var 1))"}. \subsubsection{The Value of a Boolean Expression} The value of a boolean expression depends on the value of its variables. Hence the function @{text"value"} takes an additional parameter, an \emph{environment} of type @{typ"nat => bool"}, which maps variables to their values: *} primrec "value" :: "boolex \<Rightarrow> (nat \<Rightarrow> bool) \<Rightarrow> bool" where "value (Const b) env = b" | "value (Var x) env = env x" | "value (Neg b) env = (\<not> value b env)" | "value (And b c) env = (value b env \<and> value c env)" text{*\noindent \subsubsection{If-Expressions} An alternative and often more efficient (because in a certain sense canonical) representation are so-called \emph{If-expressions} built up from constants (@{term"CIF"}), variables (@{term"VIF"}) and conditionals (@{term"IF"}): *} datatype ifex = CIF bool | VIF nat | IF ifex ifex ifex; text{*\noindent The evaluation of If-expressions proceeds as for @{typ"boolex"}: *} primrec valif :: "ifex \<Rightarrow> (nat \<Rightarrow> bool) \<Rightarrow> bool" where "valif (CIF b) env = b" | "valif (VIF x) env = env x" | "valif (IF b t e) env = (if valif b env then valif t env else valif e env)" text{* \subsubsection{Converting Boolean and If-Expressions} The type @{typ"boolex"} is close to the customary representation of logical formulae, whereas @{typ"ifex"} is designed for efficiency. It is easy to translate from @{typ"boolex"} into @{typ"ifex"}: *} primrec bool2if :: "boolex \<Rightarrow> ifex" where "bool2if (Const b) = CIF b" | "bool2if (Var x) = VIF x" | "bool2if (Neg b) = IF (bool2if b) (CIF False) (CIF True)" | "bool2if (And b c) = IF (bool2if b) (bool2if c) (CIF False)" text{*\noindent At last, we have something we can verify: that @{term"bool2if"} preserves the value of its argument: *} lemma "valif (bool2if b) env = value b env"; txt{*\noindent The proof is canonical: *} apply(induct_tac b); apply(auto); done text{*\noindent In fact, all proofs in this case study look exactly like this. Hence we do not show them below. More interesting is the transformation of If-expressions into a normal form where the first argument of @{term"IF"} cannot be another @{term"IF"} but must be a constant or variable. Such a normal form can be computed by repeatedly replacing a subterm of the form @{term"IF (IF b x y) z u"} by @{term"IF b (IF x z u) (IF y z u)"}, which has the same value. The following primitive recursive functions perform this task: *} primrec normif :: "ifex \<Rightarrow> ifex \<Rightarrow> ifex \<Rightarrow> ifex" where "normif (CIF b) t e = IF (CIF b) t e" | "normif (VIF x) t e = IF (VIF x) t e" | "normif (IF b t e) u f = normif b (normif t u f) (normif e u f)" primrec norm :: "ifex \<Rightarrow> ifex" where "norm (CIF b) = CIF b" | "norm (VIF x) = VIF x" | "norm (IF b t e) = normif b (norm t) (norm e)" text{*\noindent Their interplay is tricky; we leave it to you to develop an intuitive understanding. Fortunately, Isabelle can help us to verify that the transformation preserves the value of the expression: *} theorem "valif (norm b) env = valif b env";(*<*)oops;(*>*) text{*\noindent The proof is canonical, provided we first show the following simplification lemma, which also helps to understand what @{term"normif"} does: *} lemma [simp]: "\<forall>t e. valif (normif b t e) env = valif (IF b t e) env"; (*<*) apply(induct_tac b); by(auto); theorem "valif (norm b) env = valif b env"; apply(induct_tac b); by(auto); (*>*) text{*\noindent Note that the lemma does not have a name, but is implicitly used in the proof of the theorem shown above because of the @{text"[simp]"} attribute. But how can we be sure that @{term"norm"} really produces a normal form in the above sense? We define a function that tests If-expressions for normality: *} primrec normal :: "ifex \<Rightarrow> bool" where "normal(CIF b) = True" | "normal(VIF x) = True" | "normal(IF b t e) = (normal t \<and> normal e \<and> (case b of CIF b \<Rightarrow> True | VIF x \<Rightarrow> True | IF x y z \<Rightarrow> False))" text{*\noindent Now we prove @{term"normal(norm b)"}. Of course, this requires a lemma about normality of @{term"normif"}: *} lemma [simp]: "\<forall>t e. normal(normif b t e) = (normal t \<and> normal e)"; (*<*) apply(induct_tac b); by(auto); theorem "normal(norm b)"; apply(induct_tac b); by(auto); (*>*) text{*\medskip How do we come up with the required lemmas? Try to prove the main theorems without them and study carefully what @{text auto} leaves unproved. This can provide the clue. The necessity of universal quantification (@{text"\<forall>t e"}) in the two lemmas is explained in \S\ref{sec:InductionHeuristics} \begin{exercise} We strengthen the definition of a @{const normal} If-expression as follows: the first argument of all @{term IF}s must be a variable. Adapt the above development to this changed requirement. (Hint: you may need to formulate some of the goals as implications (@{text"\<longrightarrow>"}) rather than equalities (@{text"="}).) \end{exercise} \index{boolean expressions example|)} *} (*<*) primrec normif2 :: "ifex => ifex => ifex => ifex" where "normif2 (CIF b) t e = (if b then t else e)" | "normif2 (VIF x) t e = IF (VIF x) t e" | "normif2 (IF b t e) u f = normif2 b (normif2 t u f) (normif2 e u f)" primrec norm2 :: "ifex => ifex" where "norm2 (CIF b) = CIF b" | "norm2 (VIF x) = VIF x" | "norm2 (IF b t e) = normif2 b (norm2 t) (norm2 e)" primrec normal2 :: "ifex => bool" where "normal2(CIF b) = True" | "normal2(VIF x) = True" | "normal2(IF b t e) = (normal2 t & normal2 e & (case b of CIF b => False | VIF x => True | IF x y z => False))" lemma [simp]: "ALL t e. valif (normif2 b t e) env = valif (IF b t e) env" apply(induct b) by(auto) theorem "valif (norm2 b) env = valif b env" apply(induct b) by(auto) lemma [simp]: "ALL t e. normal2 t & normal2 e --> normal2(normif2 b t e)" apply(induct b) by(auto) theorem "normal2(norm2 b)" apply(induct b) by(auto) end (*>*)