| author | wenzelm |
| Mon, 17 Dec 2012 14:07:34 +0100 | |
| changeset 50575 | ae1da46022d1 |
| parent 49322 | fbb320d02420 |
| child 55142 | 378ae9e46175 |
| permissions | -rw-r--r-- |
(* Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1996 University of Cambridge Datatype of events; function "spies"; freshness "bad" agents have been broken by the Spy; their private keys and internal stores are visible to him *)(*<*) header{*Theory of Events for Security Protocols*} theory Event imports Message begin consts (*Initial states of agents -- parameter of the construction*) initState :: "agent => msg set" datatype event = Says agent agent msg | Gets agent msg | Notes agent msg consts bad :: "agent set" -- {* compromised agents *} text{*The constant "spies" is retained for compatibility's sake*} primrec knows :: "agent => event list => msg set" where knows_Nil: "knows A [] = initState A" | knows_Cons: "knows A (ev # evs) = (if A = Spy then (case ev of Says A' B X => insert X (knows Spy evs) | Gets A' X => knows Spy evs | Notes A' X => if A' \<in> bad then insert X (knows Spy evs) else knows Spy evs) else (case ev of Says A' B X => if A'=A then insert X (knows A evs) else knows A evs | Gets A' X => if A'=A then insert X (knows A evs) else knows A evs | Notes A' X => if A'=A then insert X (knows A evs) else knows A evs))" abbreviation (input) spies :: "event list => msg set" where "spies == knows Spy" text{*Spy has access to his own key for spoof messages, but Server is secure*} specification (bad) Spy_in_bad [iff]: "Spy \<in> bad" Server_not_bad [iff]: "Server \<notin> bad" by (rule exI [of _ "{Spy}"], simp) (* Case A=Spy on the Gets event enforces the fact that if a message is received then it must have been sent, therefore the oops case must use Notes *) primrec (*Set of items that might be visible to somebody: complement of the set of fresh items*) used :: "event list => msg set" where used_Nil: "used [] = (UN B. parts (initState B))" | used_Cons: "used (ev # evs) = (case ev of Says A B X => parts {X} \<union> used evs | Gets A X => used evs | Notes A X => parts {X} \<union> used evs)" --{*The case for @{term Gets} seems anomalous, but @{term Gets} always follows @{term Says} in real protocols. Seems difficult to change. See @{text Gets_correct} in theory @{text "Guard/Extensions.thy"}. *} lemma Notes_imp_used [rule_format]: "Notes A X \<in> set evs --> X \<in> used evs" apply (induct_tac evs) apply (auto split: event.split) done lemma Says_imp_used [rule_format]: "Says A B X \<in> set evs --> X \<in> used evs" apply (induct_tac evs) apply (auto split: event.split) done subsection{*Function @{term knows}*} (*Simplifying parts(insert X (knows Spy evs)) = parts{X} \<union> parts(knows Spy evs). This version won't loop with the simplifier.*) lemmas parts_insert_knows_A = parts_insert [of _ "knows A evs", standard] lemma knows_Spy_Says [simp]: "knows Spy (Says A B X # evs) = insert X (knows Spy evs)" by simp text{*Letting the Spy see "bad" agents' notes avoids redundant case-splits on whether @{term "A=Spy"} and whether @{term "A\<in>bad"}*} lemma knows_Spy_Notes [simp]: "knows Spy (Notes A X # evs) = (if A:bad then insert X (knows Spy evs) else knows Spy evs)" by simp lemma knows_Spy_Gets [simp]: "knows Spy (Gets A X # evs) = knows Spy evs" by simp lemma knows_Spy_subset_knows_Spy_Says: "knows Spy evs \<subseteq> knows Spy (Says A B X # evs)" by (simp add: subset_insertI) lemma knows_Spy_subset_knows_Spy_Notes: "knows Spy evs \<subseteq> knows Spy (Notes A X # evs)" by force lemma knows_Spy_subset_knows_Spy_Gets: "knows Spy evs \<subseteq> knows Spy (Gets A X # evs)" by (simp add: subset_insertI) text{*Spy sees what is sent on the traffic*} lemma Says_imp_knows_Spy [rule_format]: "Says A B X \<in> set evs --> X \<in> knows Spy evs" apply (induct_tac "evs") apply (simp_all (no_asm_simp) split add: event.split) done lemma Notes_imp_knows_Spy [rule_format]: "Notes A X \<in> set evs --> A: bad --> X \<in> knows Spy evs" apply (induct_tac "evs") apply (simp_all (no_asm_simp) split add: event.split) done text{*Elimination rules: derive contradictions from old Says events containing items known to be fresh*} lemmas knows_Spy_partsEs = Says_imp_knows_Spy [THEN parts.Inj, elim_format] parts.Body [elim_format] lemmas Says_imp_analz_Spy = Says_imp_knows_Spy [THEN analz.Inj] text{*Compatibility for the old "spies" function*} lemmas spies_partsEs = knows_Spy_partsEs lemmas Says_imp_spies = Says_imp_knows_Spy lemmas parts_insert_spies = parts_insert_knows_A [of _ Spy] subsection{*Knowledge of Agents*} lemma knows_Says: "knows A (Says A B X # evs) = insert X (knows A evs)" by simp lemma knows_Notes: "knows A (Notes A X # evs) = insert X (knows A evs)" by simp lemma knows_Gets: "A \<noteq> Spy --> knows A (Gets A X # evs) = insert X (knows A evs)" by simp lemma knows_subset_knows_Says: "knows A evs \<subseteq> knows A (Says A' B X # evs)" by (simp add: subset_insertI) lemma knows_subset_knows_Notes: "knows A evs \<subseteq> knows A (Notes A' X # evs)" by (simp add: subset_insertI) lemma knows_subset_knows_Gets: "knows A evs \<subseteq> knows A (Gets A' X # evs)" by (simp add: subset_insertI) text{*Agents know what they say*} lemma Says_imp_knows [rule_format]: "Says A B X \<in> set evs --> X \<in> knows A evs" apply (induct_tac "evs") apply (simp_all (no_asm_simp) split add: event.split) apply blast done text{*Agents know what they note*} lemma Notes_imp_knows [rule_format]: "Notes A X \<in> set evs --> X \<in> knows A evs" apply (induct_tac "evs") apply (simp_all (no_asm_simp) split add: event.split) apply blast done text{*Agents know what they receive*} lemma Gets_imp_knows_agents [rule_format]: "A \<noteq> Spy --> Gets A X \<in> set evs --> X \<in> knows A evs" apply (induct_tac "evs") apply (simp_all (no_asm_simp) split add: event.split) done text{*What agents DIFFERENT FROM Spy know was either said, or noted, or got, or known initially*} lemma knows_imp_Says_Gets_Notes_initState [rule_format]: "[| X \<in> knows A evs; A \<noteq> Spy |] ==> EX B. Says A B X \<in> set evs | Gets A X \<in> set evs | Notes A X \<in> set evs | X \<in> initState A" apply (erule rev_mp) apply (induct_tac "evs") apply (simp_all (no_asm_simp) split add: event.split) apply blast done text{*What the Spy knows -- for the time being -- was either said or noted, or known initially*} lemma knows_Spy_imp_Says_Notes_initState [rule_format]: "[| X \<in> knows Spy evs |] ==> EX A B. Says A B X \<in> set evs | Notes A X \<in> set evs | X \<in> initState Spy" apply (erule rev_mp) apply (induct_tac "evs") apply (simp_all (no_asm_simp) split add: event.split) apply blast done lemma parts_knows_Spy_subset_used: "parts (knows Spy evs) \<subseteq> used evs" apply (induct_tac "evs", force) apply (simp add: parts_insert_knows_A knows_Cons add: event.split, blast) done lemmas usedI = parts_knows_Spy_subset_used [THEN subsetD, intro] lemma initState_into_used: "X \<in> parts (initState B) ==> X \<in> used evs" apply (induct_tac "evs") apply (simp_all add: parts_insert_knows_A split add: event.split, blast) done lemma used_Says [simp]: "used (Says A B X # evs) = parts{X} \<union> used evs" by simp lemma used_Notes [simp]: "used (Notes A X # evs) = parts{X} \<union> used evs" by simp lemma used_Gets [simp]: "used (Gets A X # evs) = used evs" by simp lemma used_nil_subset: "used [] \<subseteq> used evs" apply simp apply (blast intro: initState_into_used) done text{*NOTE REMOVAL--laws above are cleaner, as they don't involve "case"*} declare knows_Cons [simp del] used_Nil [simp del] used_Cons [simp del] text{*For proving theorems of the form @{term "X \<notin> analz (knows Spy evs) --> P"} New events added by induction to "evs" are discarded. Provided this information isn't needed, the proof will be much shorter, since it will omit complicated reasoning about @{term analz}.*} lemmas analz_mono_contra = knows_Spy_subset_knows_Spy_Says [THEN analz_mono, THEN contra_subsetD] knows_Spy_subset_knows_Spy_Notes [THEN analz_mono, THEN contra_subsetD] knows_Spy_subset_knows_Spy_Gets [THEN analz_mono, THEN contra_subsetD] lemmas analz_impI = impI [where P = "Y \<notin> analz (knows Spy evs)", standard] ML {* val analz_mono_contra_tac = rtac @{thm analz_impI} THEN' REPEAT1 o (dresolve_tac @{thms analz_mono_contra}) THEN' mp_tac *} lemma knows_subset_knows_Cons: "knows A evs \<subseteq> knows A (e # evs)" by (induct e, auto simp: knows_Cons) lemma initState_subset_knows: "initState A \<subseteq> knows A evs" apply (induct_tac evs, simp) apply (blast intro: knows_subset_knows_Cons [THEN subsetD]) done text{*For proving @{text new_keys_not_used}*} lemma keysFor_parts_insert: "[| K \<in> keysFor (parts (insert X G)); X \<in> synth (analz H) |] ==> K \<in> keysFor (parts (G \<union> H)) | Key (invKey K) \<in> parts H"; by (force dest!: parts_insert_subset_Un [THEN keysFor_mono, THEN [2] rev_subsetD] analz_subset_parts [THEN keysFor_mono, THEN [2] rev_subsetD] intro: analz_subset_parts [THEN subsetD] parts_mono [THEN [2] rev_subsetD]) method_setup analz_mono_contra = {* Scan.succeed (K (SIMPLE_METHOD (REPEAT_FIRST analz_mono_contra_tac))) *} "for proving theorems of the form X \<notin> analz (knows Spy evs) --> P" subsubsection{*Useful for case analysis on whether a hash is a spoof or not*} lemmas syan_impI = impI [where P = "Y \<notin> synth (analz (knows Spy evs))", standard] ML {* val knows_Cons = @{thm knows_Cons}; val used_Nil = @{thm used_Nil}; val used_Cons = @{thm used_Cons}; val Notes_imp_used = @{thm Notes_imp_used}; val Says_imp_used = @{thm Says_imp_used}; val Says_imp_knows_Spy = @{thm Says_imp_knows_Spy}; val Notes_imp_knows_Spy = @{thm Notes_imp_knows_Spy}; val knows_Spy_partsEs = @{thms knows_Spy_partsEs}; val spies_partsEs = @{thms spies_partsEs}; val Says_imp_spies = @{thm Says_imp_spies}; val parts_insert_spies = @{thm parts_insert_spies}; val Says_imp_knows = @{thm Says_imp_knows}; val Notes_imp_knows = @{thm Notes_imp_knows}; val Gets_imp_knows_agents = @{thm Gets_imp_knows_agents}; val knows_imp_Says_Gets_Notes_initState = @{thm knows_imp_Says_Gets_Notes_initState}; val knows_Spy_imp_Says_Notes_initState = @{thm knows_Spy_imp_Says_Notes_initState}; val usedI = @{thm usedI}; val initState_into_used = @{thm initState_into_used}; val used_Says = @{thm used_Says}; val used_Notes = @{thm used_Notes}; val used_Gets = @{thm used_Gets}; val used_nil_subset = @{thm used_nil_subset}; val analz_mono_contra = @{thms analz_mono_contra}; val knows_subset_knows_Cons = @{thm knows_subset_knows_Cons}; val initState_subset_knows = @{thm initState_subset_knows}; val keysFor_parts_insert = @{thm keysFor_parts_insert}; val synth_analz_mono = @{thm synth_analz_mono}; val knows_Spy_subset_knows_Spy_Says = @{thm knows_Spy_subset_knows_Spy_Says}; val knows_Spy_subset_knows_Spy_Notes = @{thm knows_Spy_subset_knows_Spy_Notes}; val knows_Spy_subset_knows_Spy_Gets = @{thm knows_Spy_subset_knows_Spy_Gets}; val synth_analz_mono_contra_tac = rtac @{thm syan_impI} THEN' REPEAT1 o (dresolve_tac [@{thm knows_Spy_subset_knows_Spy_Says} RS @{thm synth_analz_mono} RS @{thm contra_subsetD}, @{thm knows_Spy_subset_knows_Spy_Notes} RS @{thm synth_analz_mono} RS @{thm contra_subsetD}, @{thm knows_Spy_subset_knows_Spy_Gets} RS @{thm synth_analz_mono} RS @{thm contra_subsetD}]) THEN' mp_tac *} method_setup synth_analz_mono_contra = {* Scan.succeed (K (SIMPLE_METHOD (REPEAT_FIRST synth_analz_mono_contra_tac))) *} "for proving theorems of the form X \<notin> synth (analz (knows Spy evs)) --> P" (*>*) section{* Event Traces \label{sec:events} *} text {* The system's behaviour is formalized as a set of traces of \emph{events}. The most important event, @{text "Says A B X"}, expresses $A\to B : X$, which is the attempt by~$A$ to send~$B$ the message~$X$. A trace is simply a list, constructed in reverse using~@{text "#"}. Other event types include reception of messages (when we want to make it explicit) and an agent's storing a fact. Sometimes the protocol requires an agent to generate a new nonce. The probability that a 20-byte random number has appeared before is effectively zero. To formalize this important property, the set @{term "used evs"} denotes the set of all items mentioned in the trace~@{text evs}. The function @{text used} has a straightforward recursive definition. Here is the case for @{text Says} event: @{thm [display,indent=5] used_Says [no_vars]} The function @{text knows} formalizes an agent's knowledge. Mostly we only care about the spy's knowledge, and @{term "knows Spy evs"} is the set of items available to the spy in the trace~@{text evs}. Already in the empty trace, the spy starts with some secrets at his disposal, such as the private keys of compromised users. After each @{text Says} event, the spy learns the message that was sent: @{thm [display,indent=5] knows_Spy_Says [no_vars]} Combinations of functions express other important sets of messages derived from~@{text evs}: \begin{itemize} \item @{term "analz (knows Spy evs)"} is everything that the spy could learn by decryption \item @{term "synth (analz (knows Spy evs))"} is everything that the spy could generate \end{itemize} *} (*<*) end (*>*)