theory Abstract_Limits
imports
Abstract_Topology
begin
subsection\<open>nhdsin and atin\<close>
definition nhdsin :: "'a topology \<Rightarrow> 'a \<Rightarrow> 'a filter"
where "nhdsin X a =
(if a \<in> topspace X then (INF S\<in>{S. openin X S \<and> a \<in> S}. principal S) else bot)"
definition atin :: "'a topology \<Rightarrow> 'a \<Rightarrow> 'a filter"
where "atin X a \<equiv> inf (nhdsin X a) (principal (topspace X - {a}))"
lemma nhdsin_degenerate [simp]: "a \<notin> topspace X \<Longrightarrow> nhdsin X a = bot"
and atin_degenerate [simp]: "a \<notin> topspace X \<Longrightarrow> atin X a = bot"
by (simp_all add: nhdsin_def atin_def)
lemma eventually_nhdsin:
"eventually P (nhdsin X a) \<longleftrightarrow> a \<notin> topspace X \<or> (\<exists>S. openin X S \<and> a \<in> S \<and> (\<forall>x\<in>S. P x))"
proof (cases "a \<in> topspace X")
case True
hence "nhdsin X a = (INF S\<in>{S. openin X S \<and> a \<in> S}. principal S)"
by (simp add: nhdsin_def)
also have "eventually P \<dots> \<longleftrightarrow> (\<exists>S. openin X S \<and> a \<in> S \<and> (\<forall>x\<in>S. P x))"
using True by (subst eventually_INF_base) (auto simp: eventually_principal)
finally show ?thesis using True by simp
qed auto
lemma eventually_atin:
"eventually P (atin X a) \<longleftrightarrow> a \<notin> topspace X \<or>
(\<exists>U. openin X U \<and> a \<in> U \<and> (\<forall>x \<in> U - {a}. P x))"
proof (cases "a \<in> topspace X")
case True
hence "eventually P (atin X a) \<longleftrightarrow> (\<exists>S. openin X S \<and>
a \<in> S \<and> (\<forall>x\<in>S. x \<in> topspace X \<and> x \<noteq> a \<longrightarrow> P x))"
by (simp add: atin_def eventually_inf_principal eventually_nhdsin)
also have "\<dots> \<longleftrightarrow> (\<exists>U. openin X U \<and> a \<in> U \<and> (\<forall>x \<in> U - {a}. P x))"
using openin_subset by (intro ex_cong) auto
finally show ?thesis by (simp add: True)
qed auto
lemma nontrivial_limit_atin:
"atin X a \<noteq> bot \<longleftrightarrow> a \<in> X derived_set_of topspace X"
proof
assume L: "atin X a \<noteq> bot"
then have "a \<in> topspace X"
by (meson atin_degenerate)
moreover have "\<not> openin X {a}"
using L by (auto simp: eventually_atin trivial_limit_eq)
ultimately
show "a \<in> X derived_set_of topspace X"
by (auto simp: derived_set_of_topspace)
next
assume a: "a \<in> X derived_set_of topspace X"
show "atin X a \<noteq> bot"
proof
assume "atin X a = bot"
then have "eventually (\<lambda>_. False) (atin X a)"
by simp
then show False
by (smt (verit, best) a eventually_atin in_derived_set_of insertE insert_Diff)
qed
qed
subsection\<open>Limits in a topological space\<close>
definition limitin :: "'a topology \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'b filter \<Rightarrow> bool" where
"limitin X f l F \<equiv> l \<in> topspace X \<and> (\<forall>U. openin X U \<and> l \<in> U \<longrightarrow> eventually (\<lambda>x. f x \<in> U) F)"
lemma limitinD: "\<lbrakk>limitin X f l F; openin X U; l \<in> U\<rbrakk> \<Longrightarrow> eventually (\<lambda>x. f x \<in> U) F"
by (simp add: limitin_def)
lemma limitin_canonical_iff [simp]: "limitin euclidean f l F \<longleftrightarrow> (f \<longlongrightarrow> l) F"
by (auto simp: limitin_def tendsto_def)
lemma limitin_topspace: "limitin X f l F \<Longrightarrow> l \<in> topspace X"
by (simp add: limitin_def)
lemma limitin_const_iff [simp]: "limitin X (\<lambda>a. l) l F \<longleftrightarrow> l \<in> topspace X"
by (simp add: limitin_def)
lemma limitin_const: "limitin euclidean (\<lambda>a. l) l F"
by simp
lemma limitin_eventually:
"\<lbrakk>l \<in> topspace X; eventually (\<lambda>x. f x = l) F\<rbrakk> \<Longrightarrow> limitin X f l F"
by (auto simp: limitin_def eventually_mono)
lemma limitin_subsequence:
"\<lbrakk>strict_mono r; limitin X f l sequentially\<rbrakk> \<Longrightarrow> limitin X (f \<circ> r) l sequentially"
unfolding limitin_def using eventually_subseq by fastforce
lemma limitin_subtopology:
"limitin (subtopology X S) f l F
\<longleftrightarrow> l \<in> S \<and> eventually (\<lambda>a. f a \<in> S) F \<and> limitin X f l F" (is "?lhs = ?rhs")
proof (cases "l \<in> S \<inter> topspace X")
case True
show ?thesis
proof
assume L: ?lhs
with True
have "\<forall>\<^sub>F b in F. f b \<in> topspace X \<inter> S"
by (metis (no_types) limitin_def openin_topspace topspace_subtopology)
with L show ?rhs
apply (clarsimp simp add: limitin_def eventually_mono openin_subtopology_alt)
apply (drule_tac x="S \<inter> U" in spec, force simp: elim: eventually_mono)
done
next
assume ?rhs
then show ?lhs
using eventually_elim2
by (fastforce simp add: limitin_def openin_subtopology_alt)
qed
qed (auto simp: limitin_def)
lemma limitin_canonical_iff_gen [simp]:
assumes "open S"
shows "limitin (top_of_set S) f l F \<longleftrightarrow> (f \<longlongrightarrow> l) F \<and> l \<in> S"
using assms by (auto simp: limitin_subtopology tendsto_def)
lemma limitin_sequentially:
"limitin X S l sequentially \<longleftrightarrow>
l \<in> topspace X \<and> (\<forall>U. openin X U \<and> l \<in> U \<longrightarrow> (\<exists>N. \<forall>n. N \<le> n \<longrightarrow> S n \<in> U))"
by (simp add: limitin_def eventually_sequentially)
lemma limitin_sequentially_offset:
"limitin X f l sequentially \<Longrightarrow> limitin X (\<lambda>i. f (i + k)) l sequentially"
unfolding limitin_sequentially
by (metis add.commute le_add2 order_trans)
lemma limitin_sequentially_offset_rev:
assumes "limitin X (\<lambda>i. f (i + k)) l sequentially"
shows "limitin X f l sequentially"
proof -
have "\<exists>N. \<forall>n\<ge>N. f n \<in> U" if U: "openin X U" "l \<in> U" for U
proof -
obtain N where "\<And>n. n\<ge>N \<Longrightarrow> f (n + k) \<in> U"
using assms U unfolding limitin_sequentially by blast
then have "\<forall>n\<ge>N+k. f n \<in> U"
by (metis add_leD2 le_add_diff_inverse ordered_cancel_comm_monoid_diff_class.le_diff_conv2 add.commute)
then show ?thesis ..
qed
with assms show ?thesis
unfolding limitin_sequentially
by simp
qed
lemma limitin_atin:
"limitin Y f y (atin X x) \<longleftrightarrow>
y \<in> topspace Y \<and>
(x \<in> topspace X
\<longrightarrow> (\<forall>V. openin Y V \<and> y \<in> V
\<longrightarrow> (\<exists>U. openin X U \<and> x \<in> U \<and> f ` (U - {x}) \<subseteq> V)))"
by (auto simp: limitin_def eventually_atin image_subset_iff)
lemma limitin_atin_self:
"limitin Y f (f a) (atin X a) \<longleftrightarrow>
f a \<in> topspace Y \<and>
(a \<in> topspace X
\<longrightarrow> (\<forall>V. openin Y V \<and> f a \<in> V
\<longrightarrow> (\<exists>U. openin X U \<and> a \<in> U \<and> f ` U \<subseteq> V)))"
unfolding limitin_atin by fastforce
lemma limitin_trivial:
"\<lbrakk>trivial_limit F; y \<in> topspace X\<rbrakk> \<Longrightarrow> limitin X f y F"
by (simp add: limitin_def)
lemma limitin_transform_eventually:
"\<lbrakk>eventually (\<lambda>x. f x = g x) F; limitin X f l F\<rbrakk> \<Longrightarrow> limitin X g l F"
unfolding limitin_def using eventually_elim2 by fastforce
lemma continuous_map_limit:
assumes "continuous_map X Y g" and f: "limitin X f l F"
shows "limitin Y (g \<circ> f) (g l) F"
proof -
have "g l \<in> topspace Y"
by (meson assms continuous_map_def limitin_topspace)
moreover
have "\<And>U. \<lbrakk>\<forall>V. openin X V \<and> l \<in> V \<longrightarrow> (\<forall>\<^sub>F x in F. f x \<in> V); openin Y U; g l \<in> U\<rbrakk>
\<Longrightarrow> \<forall>\<^sub>F x in F. g (f x) \<in> U"
using assms eventually_mono
by (fastforce simp: limitin_def dest!: openin_continuous_map_preimage)
ultimately show ?thesis
using f by (fastforce simp add: limitin_def)
qed
subsection\<open>Pointwise continuity in topological spaces\<close>
definition topcontinuous_at where
"topcontinuous_at X Y f x \<longleftrightarrow>
x \<in> topspace X \<and>
(\<forall>x \<in> topspace X. f x \<in> topspace Y) \<and>
(\<forall>V. openin Y V \<and> f x \<in> V
\<longrightarrow> (\<exists>U. openin X U \<and> x \<in> U \<and> (\<forall>y \<in> U. f y \<in> V)))"
lemma topcontinuous_at_atin:
"topcontinuous_at X Y f x \<longleftrightarrow>
x \<in> topspace X \<and>
(\<forall>x \<in> topspace X. f x \<in> topspace Y) \<and>
limitin Y f (f x) (atin X x)"
unfolding topcontinuous_at_def
by (fastforce simp add: limitin_atin)+
lemma continuous_map_eq_topcontinuous_at:
"continuous_map X Y f \<longleftrightarrow> (\<forall>x \<in> topspace X. topcontinuous_at X Y f x)"
(is "?lhs = ?rhs")
proof
assume ?lhs
then show ?rhs
by (auto simp: continuous_map_def topcontinuous_at_def)
next
assume R: ?rhs
then show ?lhs
apply (auto simp: continuous_map_def topcontinuous_at_def)
apply (subst openin_subopen, safe)
apply (drule bspec, assumption)
using openin_subset[of X] apply (auto simp: subset_iff dest!: spec)
done
qed
lemma continuous_map_atin:
"continuous_map X Y f \<longleftrightarrow> (\<forall>x \<in> topspace X. limitin Y f (f x) (atin X x))"
by (auto simp: limitin_def topcontinuous_at_atin continuous_map_eq_topcontinuous_at)
lemma limitin_continuous_map:
"\<lbrakk>continuous_map X Y f; a \<in> topspace X; f a = b\<rbrakk> \<Longrightarrow> limitin Y f b (atin X a)"
by (auto simp: continuous_map_atin)
subsection\<open>Combining theorems for continuous functions into the reals\<close>
lemma continuous_map_canonical_const [continuous_intros]:
"continuous_map X euclidean (\<lambda>x. c)"
by simp
lemma continuous_map_real_mult [continuous_intros]:
"\<lbrakk>continuous_map X euclideanreal f; continuous_map X euclideanreal g\<rbrakk>
\<Longrightarrow> continuous_map X euclideanreal (\<lambda>x. f x * g x)"
by (simp add: continuous_map_atin tendsto_mult)
lemma continuous_map_real_pow [continuous_intros]:
"continuous_map X euclideanreal f \<Longrightarrow> continuous_map X euclideanreal (\<lambda>x. f x ^ n)"
by (induction n) (auto simp: continuous_map_real_mult)
lemma continuous_map_real_mult_left:
"continuous_map X euclideanreal f \<Longrightarrow> continuous_map X euclideanreal (\<lambda>x. c * f x)"
by (simp add: continuous_map_atin tendsto_mult)
lemma continuous_map_real_mult_left_eq:
"continuous_map X euclideanreal (\<lambda>x. c * f x) \<longleftrightarrow> c = 0 \<or> continuous_map X euclideanreal f"
proof (cases "c = 0")
case False
have "continuous_map X euclideanreal (\<lambda>x. c * f x) \<Longrightarrow> continuous_map X euclideanreal f"
apply (frule continuous_map_real_mult_left [where c="inverse c"])
apply (simp add: field_simps False)
done
with False show ?thesis
using continuous_map_real_mult_left by blast
qed simp
lemma continuous_map_real_mult_right:
"continuous_map X euclideanreal f \<Longrightarrow> continuous_map X euclideanreal (\<lambda>x. f x * c)"
by (simp add: continuous_map_atin tendsto_mult)
lemma continuous_map_real_mult_right_eq:
"continuous_map X euclideanreal (\<lambda>x. f x * c) \<longleftrightarrow> c = 0 \<or> continuous_map X euclideanreal f"
by (simp add: mult.commute flip: continuous_map_real_mult_left_eq)
lemma continuous_map_minus [continuous_intros]:
fixes f :: "'a\<Rightarrow>'b::real_normed_vector"
shows "continuous_map X euclidean f \<Longrightarrow> continuous_map X euclidean (\<lambda>x. - f x)"
by (simp add: continuous_map_atin tendsto_minus)
lemma continuous_map_minus_eq [simp]:
fixes f :: "'a\<Rightarrow>'b::real_normed_vector"
shows "continuous_map X euclidean (\<lambda>x. - f x) \<longleftrightarrow> continuous_map X euclidean f"
using continuous_map_minus add.inverse_inverse continuous_map_eq by fastforce
lemma continuous_map_add [continuous_intros]:
fixes f :: "'a\<Rightarrow>'b::real_normed_vector"
shows "\<lbrakk>continuous_map X euclidean f; continuous_map X euclidean g\<rbrakk> \<Longrightarrow> continuous_map X euclidean (\<lambda>x. f x + g x)"
by (simp add: continuous_map_atin tendsto_add)
lemma continuous_map_diff [continuous_intros]:
fixes f :: "'a\<Rightarrow>'b::real_normed_vector"
shows "\<lbrakk>continuous_map X euclidean f; continuous_map X euclidean g\<rbrakk> \<Longrightarrow> continuous_map X euclidean (\<lambda>x. f x - g x)"
by (simp add: continuous_map_atin tendsto_diff)
lemma continuous_map_norm [continuous_intros]:
fixes f :: "'a\<Rightarrow>'b::real_normed_vector"
shows "continuous_map X euclidean f \<Longrightarrow> continuous_map X euclidean (\<lambda>x. norm(f x))"
by (simp add: continuous_map_atin tendsto_norm)
lemma continuous_map_real_abs [continuous_intros]:
"continuous_map X euclideanreal f \<Longrightarrow> continuous_map X euclideanreal (\<lambda>x. abs(f x))"
by (simp add: continuous_map_atin tendsto_rabs)
lemma continuous_map_real_max [continuous_intros]:
"\<lbrakk>continuous_map X euclideanreal f; continuous_map X euclideanreal g\<rbrakk>
\<Longrightarrow> continuous_map X euclideanreal (\<lambda>x. max (f x) (g x))"
by (simp add: continuous_map_atin tendsto_max)
lemma continuous_map_real_min [continuous_intros]:
"\<lbrakk>continuous_map X euclideanreal f; continuous_map X euclideanreal g\<rbrakk>
\<Longrightarrow> continuous_map X euclideanreal (\<lambda>x. min (f x) (g x))"
by (simp add: continuous_map_atin tendsto_min)
lemma continuous_map_sum [continuous_intros]:
fixes f :: "'a\<Rightarrow>'b\<Rightarrow>'c::real_normed_vector"
shows "\<lbrakk>finite I; \<And>i. i \<in> I \<Longrightarrow> continuous_map X euclidean (\<lambda>x. f x i)\<rbrakk>
\<Longrightarrow> continuous_map X euclidean (\<lambda>x. sum (f x) I)"
by (simp add: continuous_map_atin tendsto_sum)
lemma continuous_map_prod [continuous_intros]:
"\<lbrakk>finite I;
\<And>i. i \<in> I \<Longrightarrow> continuous_map X euclideanreal (\<lambda>x. f x i)\<rbrakk>
\<Longrightarrow> continuous_map X euclideanreal (\<lambda>x. prod (f x) I)"
by (simp add: continuous_map_atin tendsto_prod)
lemma continuous_map_real_inverse [continuous_intros]:
"\<lbrakk>continuous_map X euclideanreal f; \<And>x. x \<in> topspace X \<Longrightarrow> f x \<noteq> 0\<rbrakk>
\<Longrightarrow> continuous_map X euclideanreal (\<lambda>x. inverse(f x))"
by (simp add: continuous_map_atin tendsto_inverse)
lemma continuous_map_real_divide [continuous_intros]:
"\<lbrakk>continuous_map X euclideanreal f; continuous_map X euclideanreal g; \<And>x. x \<in> topspace X \<Longrightarrow> g x \<noteq> 0\<rbrakk>
\<Longrightarrow> continuous_map X euclideanreal (\<lambda>x. f x / g x)"
by (simp add: continuous_map_atin tendsto_divide)
end