(* Title: Pure/General/rat.ML
Author: Tobias Nipkow, Florian Haftmann, TU Muenchen
Author: Makarius
Canonical implementation of exact rational numbers.
*)
signature RAT =
sig
eqtype rat
val of_int: int -> rat
val make: int * int -> rat
val dest: rat -> int * int
val string_of_rat: rat -> string
val signed_string_of_rat: rat -> string
val ord: rat * rat -> order
val le: rat -> rat -> bool
val lt: rat -> rat -> bool
val sign: rat -> order
val abs: rat -> rat
val add: rat -> rat -> rat
val mult: rat -> rat -> rat
val neg: rat -> rat
val inv: rat -> rat
val floor: rat -> int
val ceil: rat -> int
end;
structure Rat : RAT =
struct
datatype rat = Rat of int * int; (*numerator, positive (!) denominator*)
fun of_int i = Rat (i, 1);
fun common (p1, q1) (p2, q2) =
let val m = Integer.lcm q1 q2
in ((p1 * (m div q1), p2 * (m div q2)), m) end;
fun make (_, 0) = raise Div
| make (p, q) =
let
val m = Integer.gcd p q;
val (p', q') = (p div m, q div m);
in Rat (if q' < 0 then (~ p', ~ q') else (p', q')) end
fun dest (Rat r) = r;
fun string_of_rat (Rat (p, 1)) = string_of_int p
| string_of_rat (Rat (p, q)) = string_of_int p ^ "/" ^ string_of_int q;
fun signed_string_of_rat (Rat (p, 1)) = signed_string_of_int p
| signed_string_of_rat (Rat (p, q)) = signed_string_of_int p ^ "/" ^ string_of_int q;
fun ord (Rat (p1, q1), Rat (p2, q2)) =
(case (Integer.sign p1, Integer.sign p2) of
(LESS, EQUAL) => LESS
| (LESS, GREATER) => LESS
| (EQUAL, LESS) => GREATER
| (EQUAL, EQUAL) => EQUAL
| (EQUAL, GREATER) => LESS
| (GREATER, LESS) => GREATER
| (GREATER, EQUAL) => GREATER
| _ => int_ord (fst (common (p1, q1) (p2, q2))));
fun le a b = ord (a, b) <> GREATER;
fun lt a b = ord (a, b) = LESS;
fun sign (Rat (p, _)) = Integer.sign p;
fun abs (r as Rat (p, q)) = if p < 0 then Rat (~ p, q) else r;
fun add (Rat r1) (Rat r2) =
let val ((m1, m2), n) = common r1 r2
in make (m1 + m2, n) end;
fun mult (Rat (p1, q1)) (Rat (p2, q2)) = make (p1 * p2, q1 * q2);
fun neg (Rat (p, q)) = Rat (~ p, q);
fun inv (Rat (p, q)) =
(case Integer.sign p of
LESS => Rat (~ q, ~ p)
| EQUAL => raise Div
| GREATER => Rat (q, p));
fun floor (Rat (p, q)) = p div q;
fun ceil (Rat (p, q)) =
(case Integer.div_mod p q of
(m, 0) => m
| (m, _) => m + 1);
end;
ML_system_overload (uncurry Rat.add) "+";
ML_system_overload (fn (a, b) => Rat.add a (Rat.neg b)) "-";
ML_system_overload (uncurry Rat.mult) "*";
ML_system_overload (fn (a, b) => Rat.mult a (Rat.inv b)) "/";
ML_system_overload (uncurry Rat.lt) "<";
ML_system_overload (uncurry Rat.le) "<=";
ML_system_overload (fn (a, b) => Rat.lt b a) ">";
ML_system_overload (fn (a, b) => Rat.le b a) ">=";
ML_system_overload Rat.neg "~";
ML_system_overload Rat.abs "abs";
ML_system_pp (fn _ => fn _ => fn x => Pretty.to_polyml (Pretty.str ("@" ^ Rat.string_of_rat x)));