src/HOL/Induct/Comb.thy
author oheimb
Wed, 12 Aug 1998 16:23:25 +0200
changeset 5305 513925de8962
parent 5184 9b8547a9496a
child 9101 b643f4d7b9e9
permissions -rw-r--r--
cleanup for Fun.thy: merged Update.{thy|ML} into Fun.{thy|ML} moved o_def from HOL.thy to Fun.thy added Id_def to Fun.thy moved image_compose from Set.ML to Fun.ML moved o_apply and o_assoc from simpdata.ML to Fun.ML moved fun_upd_same and fun_upd_other (from Map.ML) to Fun.ML added fun_upd_twist to Fun.ML

(*  Title:      HOL/ex/Comb.thy
    ID:         $Id$
    Author:     Lawrence C Paulson
    Copyright   1996  University of Cambridge

Combinatory Logic example: the Church-Rosser Theorem
Curiously, combinators do not include free variables.

Example taken from
    J. Camilleri and T. F. Melham.
    Reasoning with Inductively Defined Relations in the HOL Theorem Prover.
    Report 265, University of Cambridge Computer Laboratory, 1992.
*)


Comb = Datatype +

(** Datatype definition of combinators S and K, with infixed application **)
datatype comb = K
              | S
              | "#" comb comb (infixl 90)

(** Inductive definition of contractions, -1->
             and (multi-step) reductions, --->
**)
consts
  contract  :: "(comb*comb) set"
  "-1->"    :: [comb,comb] => bool   (infixl 50)
  "--->"    :: [comb,comb] => bool   (infixl 50)

translations
  "x -1-> y" == "(x,y) : contract"
  "x ---> y" == "(x,y) : contract^*"

inductive contract
  intrs
    K     "K#x#y -1-> x"
    S     "S#x#y#z -1-> (x#z)#(y#z)"
    Ap1   "x-1->y ==> x#z -1-> y#z"
    Ap2   "x-1->y ==> z#x -1-> z#y"


(** Inductive definition of parallel contractions, =1=>
             and (multi-step) parallel reductions, ===>
**)
consts
  parcontract :: "(comb*comb) set"
  "=1=>"    :: [comb,comb] => bool   (infixl 50)
  "===>"    :: [comb,comb] => bool   (infixl 50)

translations
  "x =1=> y" == "(x,y) : parcontract"
  "x ===> y" == "(x,y) : parcontract^*"

inductive parcontract
  intrs
    refl  "x =1=> x"
    K     "K#x#y =1=> x"
    S     "S#x#y#z =1=> (x#z)#(y#z)"
    Ap    "[| x=1=>y;  z=1=>w |] ==> x#z =1=> y#w"


(*Misc definitions*)
constdefs
  I :: comb
  "I == S#K#K"

  (*confluence; Lambda/Commutation treats this more abstractly*)
  diamond   :: "('a * 'a)set => bool"	
  "diamond(r) == ALL x y. (x,y):r --> 
                  (ALL y'. (x,y'):r --> 
                    (EX z. (y,z):r & (y',z) : r))"

end