(* Title: HOL/Tools/Sledgehammer/sledgehammer_provers.ML
Author: Fabian Immler, TU Muenchen
Author: Makarius
Author: Jasmin Blanchette, TU Muenchen
Generic prover abstraction for Sledgehammer.
*)
signature SLEDGEHAMMER_PROVERS =
sig
type failure = ATP_Proof.failure
type locality = ATP_Translate.locality
type type_sys = ATP_Translate.type_sys
type reconstructor = ATP_Reconstruct.reconstructor
type play = ATP_Reconstruct.play
type minimize_command = ATP_Reconstruct.minimize_command
type relevance_fudge = Sledgehammer_Filter.relevance_fudge
datatype mode = Auto_Try | Try | Normal | Minimize
datatype rich_type_sys =
Dumb_Type_Sys of type_sys |
Smart_Type_Sys of bool
type params =
{debug: bool,
verbose: bool,
overlord: bool,
blocking: bool,
provers: string list,
type_sys: rich_type_sys,
relevance_thresholds: real * real,
max_relevant: int option,
max_mono_iters: int,
max_new_mono_instances: int,
isar_proof: bool,
isar_shrink_factor: int,
slicing: bool,
timeout: Time.time,
preplay_timeout: Time.time,
expect: string}
datatype prover_fact =
Untranslated_Fact of (string * locality) * thm |
SMT_Weighted_Fact of (string * locality) * (int option * thm)
type prover_problem =
{state: Proof.state,
goal: thm,
subgoal: int,
subgoal_count: int,
facts: prover_fact list,
smt_filter: (string * locality) SMT_Solver.smt_filter_data option}
type prover_result =
{outcome: failure option,
used_facts: (string * locality) list,
run_time_in_msecs: int option,
preplay: unit -> play,
message: play -> string,
message_tail: string}
type prover =
params -> (string -> minimize_command) -> prover_problem -> prover_result
val dest_dir : string Config.T
val problem_prefix : string Config.T
val measure_run_time : bool Config.T
val atp_readable_names : bool Config.T
val smt_triggers : bool Config.T
val smt_weights : bool Config.T
val smt_weight_min_facts : int Config.T
val smt_min_weight : int Config.T
val smt_max_weight : int Config.T
val smt_max_weight_index : int Config.T
val smt_weight_curve : (int -> int) Unsynchronized.ref
val smt_max_slices : int Config.T
val smt_slice_fact_frac : real Config.T
val smt_slice_time_frac : real Config.T
val smt_slice_min_secs : int Config.T
val das_tool : string
val select_smt_solver : string -> Proof.context -> Proof.context
val prover_name_for_reconstructor : reconstructor -> string option
val is_metis_prover : string -> bool
val is_atp : theory -> string -> bool
val is_smt_prover : Proof.context -> string -> bool
val is_unit_equational_atp : Proof.context -> string -> bool
val is_prover_supported : Proof.context -> string -> bool
val is_prover_installed : Proof.context -> string -> bool
val default_max_relevant_for_prover : Proof.context -> bool -> string -> int
val is_unit_equality : term -> bool
val is_appropriate_prop_for_prover : Proof.context -> string -> term -> bool
val is_built_in_const_for_prover :
Proof.context -> string -> string * typ -> term list -> bool * term list
val atp_relevance_fudge : relevance_fudge
val smt_relevance_fudge : relevance_fudge
val relevance_fudge_for_prover : Proof.context -> string -> relevance_fudge
val weight_smt_fact :
Proof.context -> int -> ((string * locality) * thm) * int
-> (string * locality) * (int option * thm)
val untranslated_fact : prover_fact -> (string * locality) * thm
val smt_weighted_fact :
Proof.context -> int -> prover_fact * int
-> (string * locality) * (int option * thm)
val supported_provers : Proof.context -> unit
val kill_provers : unit -> unit
val running_provers : unit -> unit
val messages : int option -> unit
val filter_used_facts : ''a list -> (''a * 'b) list -> (''a * 'b) list
val get_prover : Proof.context -> mode -> string -> prover
end;
structure Sledgehammer_Provers : SLEDGEHAMMER_PROVERS =
struct
open ATP_Util
open ATP_Problem
open ATP_Proof
open ATP_Systems
open ATP_Translate
open ATP_Reconstruct
open Sledgehammer_Util
open Sledgehammer_Filter
(** The Sledgehammer **)
datatype mode = Auto_Try | Try | Normal | Minimize
(* Identifier to distinguish Sledgehammer from other tools using
"Async_Manager". *)
val das_tool = "Sledgehammer"
val metisN = Metis_Tactics.metisN
val metis_full_typesN = metisN ^ "_" ^ Metis_Tactics.full_typesN
val metis_no_typesN = metisN ^ "_" ^ Metis_Tactics.no_typesN
val metis_prover_infos =
[(metisN, Metis),
(metis_full_typesN, Metis_Full_Types),
(metis_no_typesN, Metis_No_Types)]
val prover_name_for_reconstructor =
AList.find (op =) metis_prover_infos #> try hd
val metis_reconstructors = map snd metis_prover_infos
val is_metis_prover = AList.defined (op =) metis_prover_infos
val is_atp = member (op =) o supported_atps
val select_smt_solver = Context.proof_map o SMT_Config.select_solver
fun is_smt_prover ctxt name =
member (op =) (SMT_Solver.available_solvers_of ctxt) name
fun is_unit_equational_atp ctxt name =
let val thy = Proof_Context.theory_of ctxt in
case try (get_atp thy) name of
SOME {formats, ...} => member (op =) formats CNF_UEQ
| NONE => false
end
fun is_prover_supported ctxt name =
let val thy = Proof_Context.theory_of ctxt in
is_metis_prover name orelse is_atp thy name orelse is_smt_prover ctxt name
end
fun is_prover_installed ctxt =
is_metis_prover orf is_smt_prover ctxt orf
is_atp_installed (Proof_Context.theory_of ctxt)
fun get_slices slicing slices =
(0 upto length slices - 1) ~~ slices |> not slicing ? (List.last #> single)
val metis_default_max_relevant = 20
fun default_max_relevant_for_prover ctxt slicing name =
let val thy = Proof_Context.theory_of ctxt in
if is_metis_prover name then
metis_default_max_relevant
else if is_atp thy name then
fold (Integer.max o #1 o snd o snd o snd)
(get_slices slicing (#best_slices (get_atp thy name) ctxt)) 0
else (* is_smt_prover ctxt name *)
SMT_Solver.default_max_relevant ctxt name
end
fun is_if (@{const_name If}, _) = true
| is_if _ = false
(* Beware of "if and only if" (which is translated as such) and "If" (which is
translated to conditional equations). *)
fun is_good_unit_equality T t u =
T <> @{typ bool} andalso not (exists (exists_Const is_if) [t, u])
fun is_unit_equality (@{const Trueprop} $ t) = is_unit_equality t
| is_unit_equality (Const (@{const_name all}, _) $ Abs (_, _, t)) =
is_unit_equality t
| is_unit_equality (Const (@{const_name All}, _) $ Abs (_, _, t)) =
is_unit_equality t
| is_unit_equality (Const (@{const_name "=="}, Type (_, [T, _])) $ t $ u) =
is_good_unit_equality T t u
| is_unit_equality (Const (@{const_name HOL.eq}, Type (_ , [T, _])) $ t $ u) =
is_good_unit_equality T t u
| is_unit_equality _ = false
fun is_appropriate_prop_for_prover ctxt name =
if is_unit_equational_atp ctxt name then is_unit_equality else K true
fun is_built_in_const_for_prover ctxt name =
if is_smt_prover ctxt name then
let val ctxt = ctxt |> select_smt_solver name in
fn x => fn ts =>
if SMT_Builtin.is_builtin_num_ext ctxt (list_comb (Const x, ts)) then
(true, [])
else if SMT_Builtin.is_builtin_fun_ext ctxt x ts then
(true, ts)
else
(false, ts)
end
else
fn (s, _) => fn ts => (member (op =) atp_irrelevant_consts s, ts)
(* FUDGE *)
val atp_relevance_fudge =
{local_const_multiplier = 1.5,
worse_irrel_freq = 100.0,
higher_order_irrel_weight = 1.05,
abs_rel_weight = 0.5,
abs_irrel_weight = 2.0,
skolem_irrel_weight = 0.25,
theory_const_rel_weight = 0.5,
theory_const_irrel_weight = 0.25,
chained_const_irrel_weight = 0.25,
intro_bonus = 0.15,
elim_bonus = 0.15,
simp_bonus = 0.15,
local_bonus = 0.55,
assum_bonus = 1.05,
chained_bonus = 1.5,
max_imperfect = 11.5,
max_imperfect_exp = 1.0,
threshold_divisor = 2.0,
ridiculous_threshold = 0.01}
(* FUDGE (FIXME) *)
val smt_relevance_fudge =
{local_const_multiplier = #local_const_multiplier atp_relevance_fudge,
worse_irrel_freq = #worse_irrel_freq atp_relevance_fudge,
higher_order_irrel_weight = #higher_order_irrel_weight atp_relevance_fudge,
abs_rel_weight = #abs_rel_weight atp_relevance_fudge,
abs_irrel_weight = #abs_irrel_weight atp_relevance_fudge,
skolem_irrel_weight = #skolem_irrel_weight atp_relevance_fudge,
theory_const_rel_weight = #theory_const_rel_weight atp_relevance_fudge,
theory_const_irrel_weight = #theory_const_irrel_weight atp_relevance_fudge,
chained_const_irrel_weight = #chained_const_irrel_weight atp_relevance_fudge,
intro_bonus = #intro_bonus atp_relevance_fudge,
elim_bonus = #elim_bonus atp_relevance_fudge,
simp_bonus = #simp_bonus atp_relevance_fudge,
local_bonus = #local_bonus atp_relevance_fudge,
assum_bonus = #assum_bonus atp_relevance_fudge,
chained_bonus = #chained_bonus atp_relevance_fudge,
max_imperfect = #max_imperfect atp_relevance_fudge,
max_imperfect_exp = #max_imperfect_exp atp_relevance_fudge,
threshold_divisor = #threshold_divisor atp_relevance_fudge,
ridiculous_threshold = #ridiculous_threshold atp_relevance_fudge}
fun relevance_fudge_for_prover ctxt name =
if is_smt_prover ctxt name then smt_relevance_fudge else atp_relevance_fudge
fun supported_provers ctxt =
let
val thy = Proof_Context.theory_of ctxt
val (remote_provers, local_provers) =
map fst metis_prover_infos @
sort_strings (supported_atps thy) @
sort_strings (SMT_Solver.available_solvers_of ctxt)
|> List.partition (String.isPrefix remote_prefix)
in
Output.urgent_message ("Supported provers: " ^
commas (local_provers @ remote_provers) ^ ".")
end
fun kill_provers () = Async_Manager.kill_threads das_tool "prover"
fun running_provers () = Async_Manager.running_threads das_tool "prover"
val messages = Async_Manager.thread_messages das_tool "prover"
(** problems, results, ATPs, etc. **)
datatype rich_type_sys =
Dumb_Type_Sys of type_sys |
Smart_Type_Sys of bool
type params =
{debug: bool,
verbose: bool,
overlord: bool,
blocking: bool,
provers: string list,
type_sys: rich_type_sys,
relevance_thresholds: real * real,
max_relevant: int option,
max_mono_iters: int,
max_new_mono_instances: int,
isar_proof: bool,
isar_shrink_factor: int,
slicing: bool,
timeout: Time.time,
preplay_timeout: Time.time,
expect: string}
datatype prover_fact =
Untranslated_Fact of (string * locality) * thm |
SMT_Weighted_Fact of (string * locality) * (int option * thm)
type prover_problem =
{state: Proof.state,
goal: thm,
subgoal: int,
subgoal_count: int,
facts: prover_fact list,
smt_filter: (string * locality) SMT_Solver.smt_filter_data option}
type prover_result =
{outcome: failure option,
used_facts: (string * locality) list,
run_time_in_msecs: int option,
preplay: unit -> play,
message: play -> string,
message_tail: string}
type prover =
params -> (string -> minimize_command) -> prover_problem -> prover_result
(* configuration attributes *)
(* Empty string means create files in Isabelle's temporary files directory. *)
val dest_dir =
Attrib.setup_config_string @{binding sledgehammer_dest_dir} (K "")
val problem_prefix =
Attrib.setup_config_string @{binding sledgehammer_problem_prefix} (K "prob")
val measure_run_time =
Attrib.setup_config_bool @{binding sledgehammer_measure_run_time} (K false)
(* In addition to being easier to read, readable names are often much shorter,
especially if types are mangled in names. For these reason, they are enabled
by default. *)
val atp_readable_names =
Attrib.setup_config_bool @{binding sledgehammer_atp_readable_names} (K true)
val smt_triggers =
Attrib.setup_config_bool @{binding sledgehammer_smt_triggers} (K true)
val smt_weights =
Attrib.setup_config_bool @{binding sledgehammer_smt_weights} (K true)
val smt_weight_min_facts =
Attrib.setup_config_int @{binding sledgehammer_smt_weight_min_facts} (K 20)
(* FUDGE *)
val smt_min_weight =
Attrib.setup_config_int @{binding sledgehammer_smt_min_weight} (K 0)
val smt_max_weight =
Attrib.setup_config_int @{binding sledgehammer_smt_max_weight} (K 10)
val smt_max_weight_index =
Attrib.setup_config_int @{binding sledgehammer_smt_max_weight_index} (K 200)
val smt_weight_curve = Unsynchronized.ref (fn x : int => x * x)
fun smt_fact_weight ctxt j num_facts =
if Config.get ctxt smt_weights andalso
num_facts >= Config.get ctxt smt_weight_min_facts then
let
val min = Config.get ctxt smt_min_weight
val max = Config.get ctxt smt_max_weight
val max_index = Config.get ctxt smt_max_weight_index
val curve = !smt_weight_curve
in
SOME (max - (max - min + 1) * curve (Int.max (0, max_index - j - 1))
div curve max_index)
end
else
NONE
fun weight_smt_fact ctxt num_facts ((info, th), j) =
let val thy = Proof_Context.theory_of ctxt in
(info, (smt_fact_weight ctxt j num_facts, th |> Thm.transfer thy))
end
fun untranslated_fact (Untranslated_Fact p) = p
| untranslated_fact (SMT_Weighted_Fact (info, (_, th))) = (info, th)
fun smt_weighted_fact _ _ (SMT_Weighted_Fact p, _) = p
| smt_weighted_fact ctxt num_facts (fact, j) =
(untranslated_fact fact, j) |> weight_smt_fact ctxt num_facts
fun overlord_file_location_for_prover prover =
(getenv "ISABELLE_HOME_USER", "prob_" ^ prover)
fun with_path cleanup after f path =
Exn.capture f path
|> tap (fn _ => cleanup path)
|> Exn.release
|> tap (after path)
fun proof_banner mode name =
case mode of
Auto_Try => "Auto Sledgehammer (" ^ quote name ^ ") found a proof"
| Try => "Sledgehammer (" ^ quote name ^ ") found a proof"
| _ => "Try this"
(* based on "Mirabelle.can_apply" and generalized *)
fun timed_apply timeout tac state i =
let
val {context = ctxt, facts, goal} = Proof.goal state
val full_tac = Method.insert_tac facts i THEN tac ctxt i
in TimeLimit.timeLimit timeout (try (Seq.pull o full_tac)) goal end
fun tac_for_reconstructor Metis =
Metis_Tactics.metis_tac [Metis_Tactics.partial_type_sys]
| tac_for_reconstructor Metis_Full_Types =
Metis_Tactics.metis_tac Metis_Tactics.full_type_syss
| tac_for_reconstructor Metis_No_Types =
Metis_Tactics.metis_tac [Metis_Tactics.no_type_sys]
| tac_for_reconstructor _ = raise Fail "unexpected reconstructor"
fun timed_reconstructor reconstructor debug timeout ths =
(Config.put Metis_Tactics.verbose debug
#> (fn ctxt => tac_for_reconstructor reconstructor ctxt ths))
|> timed_apply timeout
fun filter_used_facts used = filter (member (op =) used o fst)
fun play_one_line_proof debug timeout ths state i reconstructors =
let
fun play [] [] = Failed_to_Play (hd reconstructors)
| play timed_outs [] = Trust_Playable (List.last timed_outs, SOME timeout)
| play timed_out (reconstructor :: reconstructors) =
let val timer = Timer.startRealTimer () in
case timed_reconstructor reconstructor debug timeout ths state i of
SOME (SOME _) => Played (reconstructor, Timer.checkRealTimer timer)
| _ => play timed_out reconstructors
end
handle TimeLimit.TimeOut =>
play (reconstructor :: timed_out) reconstructors
in
if timeout = Time.zeroTime then Trust_Playable (hd reconstructors, NONE)
else play [] reconstructors
end
(* generic TPTP-based ATPs *)
(* Too general means, positive equality literal with a variable X as one
operand, when X does not occur properly in the other operand. This rules out
clearly inconsistent facts such as X = a | X = b, though it by no means
guarantees soundness. *)
(* Unwanted equalities are those between a (bound or schematic) variable that
does not properly occur in the second operand. *)
val is_exhaustive_finite =
let
fun is_bad_equal (Var z) t =
not (exists_subterm (fn Var z' => z = z' | _ => false) t)
| is_bad_equal (Bound j) t = not (loose_bvar1 (t, j))
| is_bad_equal _ _ = false
fun do_equals t1 t2 = is_bad_equal t1 t2 orelse is_bad_equal t2 t1
fun do_formula pos t =
case (pos, t) of
(_, @{const Trueprop} $ t1) => do_formula pos t1
| (true, Const (@{const_name all}, _) $ Abs (_, _, t')) =>
do_formula pos t'
| (true, Const (@{const_name All}, _) $ Abs (_, _, t')) =>
do_formula pos t'
| (false, Const (@{const_name Ex}, _) $ Abs (_, _, t')) =>
do_formula pos t'
| (_, @{const "==>"} $ t1 $ t2) =>
do_formula (not pos) t1 andalso
(t2 = @{prop False} orelse do_formula pos t2)
| (_, @{const HOL.implies} $ t1 $ t2) =>
do_formula (not pos) t1 andalso
(t2 = @{const False} orelse do_formula pos t2)
| (_, @{const Not} $ t1) => do_formula (not pos) t1
| (true, @{const HOL.disj} $ t1 $ t2) => forall (do_formula pos) [t1, t2]
| (false, @{const HOL.conj} $ t1 $ t2) => forall (do_formula pos) [t1, t2]
| (true, Const (@{const_name HOL.eq}, _) $ t1 $ t2) => do_equals t1 t2
| (true, Const (@{const_name "=="}, _) $ t1 $ t2) => do_equals t1 t2
| _ => false
in do_formula true end
fun has_bound_or_var_of_type pred =
exists_subterm (fn Var (_, T as Type _) => pred T
| Abs (_, T as Type _, _) => pred T
| _ => false)
(* Facts are forbidden to contain variables of these types. The typical reason
is that they lead to unsoundness. Note that "unit" satisfies numerous
equations like "?x = ()". The resulting clauses will have no type constraint,
yielding false proofs. Even "bool" leads to many unsound proofs, though only
for higher-order problems. *)
(* Facts containing variables of type "unit" or "bool" or of the form
"ALL x. x = A | x = B | x = C" are likely to lead to unsound proofs if types
are omitted. *)
fun is_dangerous_prop ctxt =
transform_elim_prop
#> (has_bound_or_var_of_type (is_type_surely_finite ctxt) orf
is_exhaustive_finite)
fun int_opt_add (SOME m) (SOME n) = SOME (m + n)
| int_opt_add _ _ = NONE
(* Important messages are important but not so important that users want to see
them each time. *)
val atp_important_message_keep_quotient = 10
val fallback_best_type_syss =
[Preds (Mangled_Monomorphic, Noninf_Nonmono_Types, Lightweight)]
fun choose_format_and_type_sys _ formats (Dumb_Type_Sys type_sys) =
choose_format formats type_sys
| choose_format_and_type_sys best_type_syss formats
(Smart_Type_Sys full_types) =
map type_sys_from_string best_type_syss @ fallback_best_type_syss
|> find_first (if full_types then is_type_sys_virtually_sound else K true)
|> the |> choose_format formats
val metis_minimize_max_time = seconds 2.0
fun choose_minimize_command minimize_command name preplay =
(case preplay of
Played (reconstructor, time) =>
if Time.<= (time, metis_minimize_max_time) then
prover_name_for_reconstructor reconstructor |> the_default name
else
name
| _ => name)
|> minimize_command
fun repair_monomorph_context max_iters max_new_instances =
Config.put Monomorph.max_rounds max_iters
#> Config.put Monomorph.max_new_instances max_new_instances
#> Config.put Monomorph.keep_partial_instances false
fun run_atp mode name
({exec, required_execs, arguments, proof_delims, known_failures,
conj_sym_kind, prem_kind, formats, best_slices, ...} : atp_config)
({debug, verbose, overlord, type_sys, max_relevant, max_mono_iters,
max_new_mono_instances, isar_proof, isar_shrink_factor, slicing,
timeout, preplay_timeout, ...} : params)
minimize_command
({state, goal, subgoal, subgoal_count, facts, ...} : prover_problem) =
let
val thy = Proof.theory_of state
val ctxt = Proof.context_of state
val (_, hyp_ts, concl_t) = strip_subgoal ctxt goal subgoal
val (dest_dir, problem_prefix) =
if overlord then overlord_file_location_for_prover name
else (Config.get ctxt dest_dir, Config.get ctxt problem_prefix)
val problem_file_name =
Path.basic (problem_prefix ^ (if overlord then "" else serial_string ()) ^
"_" ^ string_of_int subgoal)
val problem_path_name =
if dest_dir = "" then
File.tmp_path problem_file_name
else if File.exists (Path.explode dest_dir) then
Path.append (Path.explode dest_dir) problem_file_name
else
error ("No such directory: " ^ quote dest_dir ^ ".")
val measure_run_time = verbose orelse Config.get ctxt measure_run_time
val command = Path.explode (getenv (fst exec) ^ "/" ^ snd exec)
fun split_time s =
let
val split = String.tokens (fn c => str c = "\n")
val (output, t) = s |> split |> split_last |> apfst cat_lines
fun as_num f = f >> (fst o read_int)
val num = as_num (Scan.many1 Symbol.is_ascii_digit)
val digit = Scan.one Symbol.is_ascii_digit
val num3 = as_num (digit ::: digit ::: (digit >> single))
val time = num --| Scan.$$ "." -- num3 >> (fn (a, b) => a * 1000 + b)
val as_time = Scan.read Symbol.stopper time o raw_explode
in (output, as_time t) end
fun run_on prob_file =
case filter (curry (op =) "" o getenv o fst) (exec :: required_execs) of
(home_var, _) :: _ =>
error ("The environment variable " ^ quote home_var ^ " is not set.")
| [] =>
if File.exists command then
let
(* If slicing is disabled, we expand the last slice to fill the
entire time available. *)
val actual_slices = get_slices slicing (best_slices ctxt)
val num_actual_slices = length actual_slices
fun monomorphize_facts facts =
let
val ctxt =
ctxt |> repair_monomorph_context max_mono_iters
max_new_mono_instances
(* pseudo-theorem involving the same constants as the subgoal *)
val subgoal_th =
Logic.list_implies (hyp_ts, concl_t)
|> Skip_Proof.make_thm thy
val rths =
facts |> chop (length facts div 4)
|>> map (pair 1 o snd)
||> map (pair 2 o snd)
|> op @
|> cons (0, subgoal_th)
in
Monomorph.monomorph atp_schematic_consts_of rths ctxt
|> fst |> tl
|> curry ListPair.zip (map fst facts)
|> maps (fn (name, rths) => map (pair name o snd) rths)
end
fun run_slice (slice, (time_frac, (complete,
(best_max_relevant, best_type_syss, extra))))
time_left =
let
val num_facts =
length facts |> is_none max_relevant
? Integer.min best_max_relevant
val (format, type_sys) =
choose_format_and_type_sys best_type_syss formats type_sys
val fairly_sound = is_type_sys_fairly_sound type_sys
val facts =
facts |> map untranslated_fact
|> not fairly_sound
? filter_out (is_dangerous_prop ctxt o prop_of o snd)
|> take num_facts
|> polymorphism_of_type_sys type_sys <> Polymorphic
? monomorphize_facts
|> map (apsnd prop_of)
val real_ms = Real.fromInt o Time.toMilliseconds
val slice_timeout =
((real_ms time_left
|> (if slice < num_actual_slices - 1 then
curry Real.min (time_frac * real_ms timeout)
else
I))
* 0.001) |> seconds
val _ =
if debug then
quote name ^ " slice #" ^ string_of_int (slice + 1) ^
" with " ^ string_of_int num_facts ^ " fact" ^
plural_s num_facts ^ " for " ^
string_from_time slice_timeout ^ "..."
|> Output.urgent_message
else
()
val (atp_problem, pool, conjecture_offset, facts_offset,
fact_names, typed_helpers, sym_tab) =
prepare_atp_problem ctxt format conj_sym_kind prem_kind
type_sys true (Config.get ctxt atp_readable_names) true
hyp_ts concl_t facts
fun weights () = atp_problem_weights atp_problem
val full_proof = debug orelse isar_proof
val core =
File.shell_path command ^ " " ^
arguments ctxt full_proof extra slice_timeout weights ^ " " ^
File.shell_path prob_file
val command =
(if measure_run_time then
"TIMEFORMAT='%3R'; { time " ^ core ^ " ; }"
else
"exec " ^ core) ^ " 2>&1"
val _ =
atp_problem
|> tptp_lines_for_atp_problem format
|> cons ("% " ^ command ^ "\n")
|> File.write_list prob_file
val conjecture_shape =
conjecture_offset + 1
upto conjecture_offset + length hyp_ts + 1
|> map single
val ((output, msecs), _) =
bash_output command
|>> (if overlord then
prefix ("% " ^ command ^ "\n% " ^ timestamp () ^ "\n")
else
I)
|>> (if measure_run_time then split_time else rpair NONE)
val (atp_proof, outcome) =
extract_tstplike_proof_and_outcome verbose complete
proof_delims known_failures output
|>> atp_proof_from_tstplike_proof atp_problem output
handle UNRECOGNIZED_ATP_PROOF () => ([], SOME ProofIncomplete)
val outcome =
case outcome of
NONE =>
used_facts_in_unsound_atp_proof ctxt
conjecture_shape facts_offset fact_names atp_proof
|> Option.map (fn facts =>
UnsoundProof (is_type_sys_virtually_sound type_sys,
facts |> sort string_ord))
| _ => outcome
in
((pool, conjecture_shape, facts_offset, fact_names,
typed_helpers, sym_tab),
(output, msecs, atp_proof, outcome))
end
val timer = Timer.startRealTimer ()
fun maybe_run_slice slice (result as (_, (_, msecs0, _, SOME _))) =
let
val time_left = Time.- (timeout, Timer.checkRealTimer timer)
in
if Time.<= (time_left, Time.zeroTime) then
result
else
(run_slice slice time_left
|> (fn (stuff, (output, msecs, atp_proof, outcome)) =>
(stuff, (output, int_opt_add msecs0 msecs,
atp_proof, outcome))))
end
| maybe_run_slice _ result = result
in
((Symtab.empty, [], 0, Vector.fromList [], [], Symtab.empty),
("", SOME 0, [], SOME InternalError))
|> fold maybe_run_slice actual_slices
end
else
error ("Bad executable: " ^ Path.print command ^ ".")
(* If the problem file has not been exported, remove it; otherwise, export
the proof file too. *)
fun cleanup prob_file =
if dest_dir = "" then try File.rm prob_file else NONE
fun export prob_file (_, (output, _, _, _)) =
if dest_dir = "" then
()
else
File.write (Path.explode (Path.implode prob_file ^ "_proof")) output
val ((pool, conjecture_shape, facts_offset, fact_names, typed_helpers,
sym_tab),
(output, msecs, atp_proof, outcome)) =
with_path cleanup export run_on problem_path_name
val important_message =
if mode = Normal andalso
random_range 0 (atp_important_message_keep_quotient - 1) = 0 then
extract_important_message output
else
""
val (used_facts, preplay, message, message_tail) =
case outcome of
NONE =>
let
val used_facts =
used_facts_in_atp_proof ctxt facts_offset fact_names atp_proof
in
(used_facts,
fn () =>
let
val used_ths =
facts |> map untranslated_fact |> filter_used_facts used_facts
|> map snd
in
play_one_line_proof debug preplay_timeout used_ths state subgoal
metis_reconstructors
end,
fn preplay =>
let
val full_types = uses_typed_helpers typed_helpers atp_proof
val isar_params =
(debug, full_types, isar_shrink_factor, pool,
conjecture_shape, facts_offset, fact_names, sym_tab,
atp_proof, goal)
val one_line_params =
(preplay, proof_banner mode name, used_facts,
choose_minimize_command minimize_command name preplay,
subgoal, subgoal_count)
in proof_text ctxt isar_proof isar_params one_line_params end,
(if verbose then
"\nATP real CPU time: " ^
string_from_time (Time.fromMilliseconds (the msecs)) ^ "."
else
"") ^
(if important_message <> "" then
"\n\nImportant message from Dr. Geoff Sutcliffe:\n" ^
important_message
else
""))
end
| SOME failure =>
([], K (Failed_to_Play Metis), fn _ => string_for_failure failure, "")
in
{outcome = outcome, used_facts = used_facts, run_time_in_msecs = msecs,
preplay = preplay, message = message, message_tail = message_tail}
end
(* "SMT_Failure.Abnormal_Termination" carries the solver's return code. Until
these are sorted out properly in the SMT module, we have to interpret these
ourselves. *)
val remote_smt_failures =
[(22, CantConnect),
(2, NoLibwwwPerl)]
val z3_wrapper_failures =
[(11, InternalError),
(12, InternalError),
(13, InternalError)]
val z3_failures =
[(101, OutOfResources),
(103, MalformedInput),
(110, MalformedInput)]
val unix_failures =
[(139, Crashed)]
val smt_failures =
remote_smt_failures @ z3_wrapper_failures @ z3_failures @ unix_failures
fun failure_from_smt_failure (SMT_Failure.Counterexample {is_real_cex, ...}) =
if is_real_cex then Unprovable else GaveUp
| failure_from_smt_failure SMT_Failure.Time_Out = TimedOut
| failure_from_smt_failure (SMT_Failure.Abnormal_Termination code) =
(case AList.lookup (op =) smt_failures code of
SOME failure => failure
| NONE => UnknownError ("Abnormal termination with exit code " ^
string_of_int code ^ "."))
| failure_from_smt_failure SMT_Failure.Out_Of_Memory = OutOfResources
| failure_from_smt_failure (SMT_Failure.Other_Failure msg) =
UnknownError msg
(* FUDGE *)
val smt_max_slices =
Attrib.setup_config_int @{binding sledgehammer_smt_max_slices} (K 8)
val smt_slice_fact_frac =
Attrib.setup_config_real @{binding sledgehammer_smt_slice_fact_frac} (K 0.5)
val smt_slice_time_frac =
Attrib.setup_config_real @{binding sledgehammer_smt_slice_time_frac} (K 0.5)
val smt_slice_min_secs =
Attrib.setup_config_int @{binding sledgehammer_smt_slice_min_secs} (K 5)
fun smt_filter_loop ctxt name
({debug, verbose, overlord, max_mono_iters,
max_new_mono_instances, timeout, slicing, ...} : params)
state i smt_filter =
let
val max_slices = if slicing then Config.get ctxt smt_max_slices else 1
val repair_context =
select_smt_solver name
#> (if overlord then
Config.put SMT_Config.debug_files
(overlord_file_location_for_prover name
|> (fn (path, name) => path ^ "/" ^ name))
else
I)
#> Config.put SMT_Config.infer_triggers (Config.get ctxt smt_triggers)
val state = state |> Proof.map_context repair_context
fun do_slice timeout slice outcome0 time_so_far facts =
let
val timer = Timer.startRealTimer ()
val state =
state |> Proof.map_context
(repair_monomorph_context max_mono_iters
max_new_mono_instances)
val ms = timeout |> Time.toMilliseconds
val slice_timeout =
if slice < max_slices then
Int.min (ms,
Int.max (1000 * Config.get ctxt smt_slice_min_secs,
Real.ceil (Config.get ctxt smt_slice_time_frac
* Real.fromInt ms)))
|> Time.fromMilliseconds
else
timeout
val num_facts = length facts
val _ =
if debug then
quote name ^ " slice " ^ string_of_int slice ^ " with " ^
string_of_int num_facts ^ " fact" ^ plural_s num_facts ^ " for " ^
string_from_time slice_timeout ^ "..."
|> Output.urgent_message
else
()
val birth = Timer.checkRealTimer timer
val _ =
if debug then Output.urgent_message "Invoking SMT solver..." else ()
val (outcome, used_facts) =
(case (slice, smt_filter) of
(1, SOME head) => head |> apsnd (apsnd repair_context)
| _ => SMT_Solver.smt_filter_preprocess state facts i)
|> SMT_Solver.smt_filter_apply slice_timeout
|> (fn {outcome, used_facts} => (outcome, used_facts))
handle exn => if Exn.is_interrupt exn then
reraise exn
else
(ML_Compiler.exn_message exn
|> SMT_Failure.Other_Failure |> SOME, [])
val death = Timer.checkRealTimer timer
val outcome0 = if is_none outcome0 then SOME outcome else outcome0
val time_so_far = Time.+ (time_so_far, Time.- (death, birth))
val too_many_facts_perhaps =
case outcome of
NONE => false
| SOME (SMT_Failure.Counterexample _) => false
| SOME SMT_Failure.Time_Out => slice_timeout <> timeout
| SOME (SMT_Failure.Abnormal_Termination _) => true (* kind of *)
| SOME SMT_Failure.Out_Of_Memory => true
| SOME (SMT_Failure.Other_Failure _) => true
val timeout = Time.- (timeout, Timer.checkRealTimer timer)
in
if too_many_facts_perhaps andalso slice < max_slices andalso
num_facts > 0 andalso Time.> (timeout, Time.zeroTime) then
let
val new_num_facts =
Real.ceil (Config.get ctxt smt_slice_fact_frac
* Real.fromInt num_facts)
val _ =
if verbose andalso is_some outcome then
quote name ^ " invoked with " ^ string_of_int num_facts ^
" fact" ^ plural_s num_facts ^ ": " ^
string_for_failure (failure_from_smt_failure (the outcome)) ^
" Retrying with " ^ string_of_int new_num_facts ^ " fact" ^
plural_s new_num_facts ^ "..."
|> Output.urgent_message
else
()
in
facts |> take new_num_facts
|> do_slice timeout (slice + 1) outcome0 time_so_far
end
else
{outcome = if is_none outcome then NONE else the outcome0,
used_facts = used_facts,
run_time_in_msecs = SOME (Time.toMilliseconds time_so_far)}
end
in do_slice timeout 1 NONE Time.zeroTime end
fun run_smt_solver mode name (params as {debug, verbose, preplay_timeout, ...})
minimize_command
({state, subgoal, subgoal_count, facts, smt_filter, ...}
: prover_problem) =
let
val ctxt = Proof.context_of state
val num_facts = length facts
val facts = facts ~~ (0 upto num_facts - 1)
|> map (smt_weighted_fact ctxt num_facts)
val {outcome, used_facts, run_time_in_msecs} =
smt_filter_loop ctxt name params state subgoal smt_filter facts
val (used_facts, used_ths) = used_facts |> ListPair.unzip
val outcome = outcome |> Option.map failure_from_smt_failure
val (preplay, message, message_tail) =
case outcome of
NONE =>
(fn () =>
let
fun smt_settings () =
if name = SMT_Solver.solver_name_of ctxt then ""
else "smt_solver = " ^ maybe_quote name
in
case play_one_line_proof debug preplay_timeout used_ths state
subgoal metis_reconstructors of
p as Played _ => p
| _ => Trust_Playable (SMT (smt_settings ()), NONE)
end,
fn preplay =>
let
val one_line_params =
(preplay, proof_banner mode name, used_facts,
choose_minimize_command minimize_command name preplay,
subgoal, subgoal_count)
in one_line_proof_text one_line_params end,
if verbose then
"\nSMT solver real CPU time: " ^
string_from_time (Time.fromMilliseconds
(the run_time_in_msecs)) ^ "."
else
"")
| SOME failure =>
(K (Failed_to_Play Metis), fn _ => string_for_failure failure, "")
in
{outcome = outcome, used_facts = used_facts,
run_time_in_msecs = run_time_in_msecs, preplay = preplay,
message = message, message_tail = message_tail}
end
fun run_metis mode name ({debug, timeout, ...} : params) minimize_command
({state, subgoal, subgoal_count, facts, ...} : prover_problem) =
let
val reconstructor =
case AList.lookup (op =) metis_prover_infos name of
SOME r => r
| NONE => raise Fail ("unknown Metis version: " ^ quote name)
val (used_facts, used_ths) =
facts |> map untranslated_fact |> ListPair.unzip
in
case play_one_line_proof debug timeout used_ths state subgoal
[reconstructor] of
play as Played (_, time) =>
{outcome = NONE, used_facts = used_facts,
run_time_in_msecs = SOME (Time.toMilliseconds time),
preplay = K play,
message = fn play =>
let
val one_line_params =
(play, proof_banner mode name, used_facts,
minimize_command name, subgoal, subgoal_count)
in one_line_proof_text one_line_params end,
message_tail = ""}
| play =>
let
val failure = case play of Failed_to_Play _ => GaveUp | _ => TimedOut
in
{outcome = SOME failure, used_facts = [], run_time_in_msecs = NONE,
preplay = K play, message = fn _ => string_for_failure failure,
message_tail = ""}
end
end
fun get_prover ctxt mode name =
let val thy = Proof_Context.theory_of ctxt in
if is_metis_prover name then run_metis mode name
else if is_atp thy name then run_atp mode name (get_atp thy name)
else if is_smt_prover ctxt name then run_smt_solver mode name
else error ("No such prover: " ^ name ^ ".")
end
end;