(* Title: HOL/ex/PiSets.thy
ID: $Id$
Author: Florian Kammueller, University of Cambridge
Theory for Pi type in terms of sets.
*)
PiSets = Univ + Finite +
consts
Pi :: "['a set, 'a => 'b set] => ('a => 'b) set"
consts
restrict :: "['a => 'b, 'a set] => ('a => 'b)"
defs
restrict_def "restrict f A == (%x. if x : A then f x else (@ y. True))"
syntax
"@Pi" :: "[idt, 'a set, 'b set] => ('a => 'b) set" ("(3PI _:_./ _)" 10)
"@->" :: "['a set, 'b set] => ('a => 'b) set" ("_ -> _" [91,90]90)
(* or "->" ... (infixr 60) and at the end print_translation (... op ->) *)
"@lam" :: "[idt, 'a set, 'a => 'b] => ('a => 'b)" ("(3lam _:_./ _)" 10)
(* Could as well take pttrn *)
translations
"PI x:A. B" => "Pi A (%x. B)"
"A -> B" => "Pi A (_K B)"
"lam x:A. f" == "restrict (%x. f) A"
(* Larry fragen: "lam (x,y): A. f" == "restrict (%(x,y). f) A" *)
defs
Pi_def "Pi A B == {f. ! x. if x:A then f(x) : B(x) else f(x) = (@ y. True)}"
consts
Fset_apply :: "[('a => 'b) set, 'a]=> 'b set" ("_ @@ _" [90,91]90)
defs
Fset_apply_def "F @@ a == (%f. f a) `` F"
consts
compose :: "['a set, 'a => 'b, 'b => 'c] => ('a => 'c)"
defs
compose_def "compose A g f == lam x : A. g(f x)"
consts
Inv :: "['a set, 'a => 'b] => ('b => 'a)"
defs
Inv_def "Inv A f == (% x. (@ y. y : A & f y = x))"
(* new: bijection between Pi_sig and Pi_=> *)
consts
PiBij :: "['a set, 'a => 'b set, 'a => 'b] => ('a * 'b) set"
defs
PiBij_def "PiBij A B == lam f: Pi A B. {(x, y). x: A & y = f x}"
consts
Graph :: "['a set, 'a => 'b set] => ('a * 'b) set set"
defs
Graph_def "Graph A B == {f. f: Pow(Sigma A B) & (! x: A. (?! y. (x, y): f))}"
end
ML
val print_translation = [("Pi", dependent_tr' ("@Pi", "@->"))];