Added syntax for "asm_lr" simplifier option.
(*  Title:      FOL/ifol.thy
    ID:         $Id$
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1993  University of Cambridge
Intuitionistic first-order logic
*)
IFOL = Pure +
classes
  term < logic
default
  term
types
  o
arities
  o :: logic
consts
  Trueprop      :: "o => prop"                  ("(_)" 5)
  True, False   :: "o"
  (* Connectives *)
  "="           :: "['a, 'a] => o"              (infixl 50)
  "~="          :: "['a, 'a] => o"              ("(_ ~=/ _)" [50, 51] 50)
  Not           :: "o => o"                     ("~ _" [40] 40)
  "&"           :: "[o, o] => o"                (infixr 35)
  "|"           :: "[o, o] => o"                (infixr 30)
  "-->"         :: "[o, o] => o"                (infixr 25)
  "<->"         :: "[o, o] => o"                (infixr 25)
  (* Quantifiers *)
  All           :: "('a => o) => o"             (binder "ALL " 10)
  Ex            :: "('a => o) => o"             (binder "EX " 10)
  Ex1           :: "('a => o) => o"             (binder "EX! " 10)
translations
  "x ~= y"      == "~ (x = y)"
rules
  (* Equality *)
  refl          "a=a"
  subst         "[| a=b;  P(a) |] ==> P(b)"
  (* Propositional logic *)
  conjI         "[| P;  Q |] ==> P&Q"
  conjunct1     "P&Q ==> P"
  conjunct2     "P&Q ==> Q"
  disjI1        "P ==> P|Q"
  disjI2        "Q ==> P|Q"
  disjE         "[| P|Q;  P ==> R;  Q ==> R |] ==> R"
  impI          "(P ==> Q) ==> P-->Q"
  mp            "[| P-->Q;  P |] ==> Q"
  FalseE        "False ==> P"
  (* Definitions *)
  True_def      "True  == False-->False"
  not_def       "~P    == P-->False"
  iff_def       "P<->Q == (P-->Q) & (Q-->P)"
  (* Unique existence *)
  ex1_def       "EX! x. P(x) == EX x. P(x) & (ALL y. P(y) --> y=x)"
  (* Quantifiers *)
  allI          "(!!x. P(x)) ==> (ALL x.P(x))"
  spec          "(ALL x.P(x)) ==> P(x)"
  exI           "P(x) ==> (EX x.P(x))"
  exE           "[| EX x.P(x);  !!x. P(x) ==> R |] ==> R"
  (* Reflection *)
  eq_reflection   "(x=y)   ==> (x==y)"
  iff_reflection  "(P<->Q) ==> (P==Q)"
end