src/HOL/Matrix/cplex/Cplex.thy
author nipkow
Wed, 28 Jan 2009 16:29:16 +0100
changeset 29667 53103fc8ffa3
parent 28637 7aabaf1ba263
child 29804 e15b74577368
permissions -rw-r--r--
Replaced group_ and ring_simps by algebra_simps; removed compare_rls - use algebra_simps now

(*  Title:      HOL/Matrix/cplex/Cplex.thy
    ID:         $Id$
    Author:     Steven Obua
*)

theory Cplex 
imports SparseMatrix LP "~~/src/HOL/Real/Float" "~~/src/HOL/Tools/ComputeNumeral"
uses "Cplex_tools.ML" "CplexMatrixConverter.ML" "FloatSparseMatrixBuilder.ML"
  "fspmlp.ML" ("matrixlp.ML")
begin

lemma spm_mult_le_dual_prts: 
  assumes
  "sorted_sparse_matrix A1"
  "sorted_sparse_matrix A2"
  "sorted_sparse_matrix c1"
  "sorted_sparse_matrix c2"
  "sorted_sparse_matrix y"
  "sorted_sparse_matrix r1"
  "sorted_sparse_matrix r2"
  "sorted_spvec b"
  "le_spmat ([], y)"
  "sparse_row_matrix A1 \<le> A"
  "A \<le> sparse_row_matrix A2"
  "sparse_row_matrix c1 \<le> c"
  "c \<le> sparse_row_matrix c2"
  "sparse_row_matrix r1 \<le> x"
  "x \<le> sparse_row_matrix r2"
  "A * x \<le> sparse_row_matrix (b::('a::lordered_ring) spmat)"
  shows
  "c * x \<le> sparse_row_matrix (add_spmat (mult_spmat y b,
  (let s1 = diff_spmat c1 (mult_spmat y A2); s2 = diff_spmat c2 (mult_spmat y A1) in 
  add_spmat (mult_spmat (pprt_spmat s2) (pprt_spmat r2), add_spmat (mult_spmat (pprt_spmat s1) (nprt_spmat r2), 
  add_spmat (mult_spmat (nprt_spmat s2) (pprt_spmat r1), mult_spmat (nprt_spmat s1) (nprt_spmat r1)))))))"
  apply (simp add: Let_def)
  apply (insert assms)
  apply (simp add: sparse_row_matrix_op_simps algebra_simps)  
  apply (rule mult_le_dual_prts[where A=A, simplified Let_def algebra_simps])
  apply (auto)
  done

lemma spm_mult_le_dual_prts_no_let: 
  assumes
  "sorted_sparse_matrix A1"
  "sorted_sparse_matrix A2"
  "sorted_sparse_matrix c1"
  "sorted_sparse_matrix c2"
  "sorted_sparse_matrix y"
  "sorted_sparse_matrix r1"
  "sorted_sparse_matrix r2"
  "sorted_spvec b"
  "le_spmat ([], y)"
  "sparse_row_matrix A1 \<le> A"
  "A \<le> sparse_row_matrix A2"
  "sparse_row_matrix c1 \<le> c"
  "c \<le> sparse_row_matrix c2"
  "sparse_row_matrix r1 \<le> x"
  "x \<le> sparse_row_matrix r2"
  "A * x \<le> sparse_row_matrix (b::('a::lordered_ring) spmat)"
  shows
  "c * x \<le> sparse_row_matrix (add_spmat (mult_spmat y b,
  mult_est_spmat r1 r2 (diff_spmat c1 (mult_spmat y A2)) (diff_spmat c2 (mult_spmat y A1))))"
  by (simp add: assms mult_est_spmat_def spm_mult_le_dual_prts[where A=A, simplified Let_def])

use "matrixlp.ML"

end