(* Title: FOL/ex/list
ID: $Id$
Author: Tobias Nipkow
Copyright 1991 University of Cambridge
Examples of simplification and induction on lists
*)
List = Nat2 +
types 'a list
arities list :: (term)term
consts
hd :: 'a list => 'a
tl :: 'a list => 'a list
forall :: ['a list, 'a => o] => o
len :: 'a list => nat
at :: ['a list, nat] => 'a
Nil :: ('a list) ("[]")
Cons :: ['a, 'a list] => 'a list (infixr "." 80)
"++" :: ['a list, 'a list] => 'a list (infixr 70)
rules
list_ind "[| P([]); ALL x l. P(l)-->P(x . l) |] ==> All(P)"
forall_cong
"[| l = l'; !!x. P(x)<->P'(x) |] ==> forall(l,P) <-> forall(l',P')"
list_distinct1 "~[] = x . l"
list_distinct2 "~x . l = []"
list_free "x . l = x' . l' <-> x=x' & l=l'"
app_nil "[]++l = l"
app_cons "(x . l)++l' = x .(l++l')"
tl_eq "tl(m . q) = q"
hd_eq "hd(m . q) = m"
forall_nil "forall([],P)"
forall_cons "forall(x . l,P) <-> P(x) & forall(l,P)"
len_nil "len([]) = 0"
len_cons "len(m . q) = succ(len(q))"
at_0 "at(m . q,0) = m"
at_succ "at(m . q,succ(n)) = at(q,n)"
end