(* Title: ZF/datatype.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
(Co)Datatype Definitions for Zermelo-Fraenkel Set Theory
*)
(*Datatype definitions use least fixedpoints, standard products and sums*)
functor Datatype_Fun (Const: CONSTRUCTOR)
: sig include CONSTRUCTOR_RESULT INTR_ELIM INDRULE end =
struct
structure Constructor = Constructor_Fun (structure Const=Const and
Pr=Standard_Prod and Su=Standard_Sum);
open Const Constructor;
structure Inductive = Inductive_Fun
(val thy = con_thy;
val thy_name = thy_name;
val rec_doms = (map #1 rec_specs) ~~ (map #2 rec_specs);
val sintrs = sintrs;
val monos = monos;
val con_defs = con_defs;
val type_intrs = type_intrs;
val type_elims = type_elims);
open Inductive
end;
(*Codatatype definitions use greatest fixedpoints, Quine products and sums*)
functor CoDatatype_Fun (Const: CONSTRUCTOR)
: sig include CONSTRUCTOR_RESULT INTR_ELIM COINDRULE end =
struct
structure Constructor = Constructor_Fun (structure Const=Const and
Pr=Quine_Prod and Su=Quine_Sum);
open Const Constructor;
structure CoInductive = CoInductive_Fun
(val thy = con_thy;
val thy_name = thy_name;
val rec_doms = (map #1 rec_specs) ~~ (map #2 rec_specs);
val sintrs = sintrs;
val monos = monos;
val con_defs = con_defs;
val type_intrs = type_intrs;
val type_elims = type_elims);
open CoInductive
end;
(*For most datatypes involving univ*)
val datatype_intrs =
[SigmaI, InlI, InrI,
Pair_in_univ, Inl_in_univ, Inr_in_univ,
zero_in_univ, A_into_univ, nat_into_univ, UnCI];
(*Needed for mutual recursion*)
val datatype_elims = [make_elim InlD, make_elim InrD];
(*For most codatatypes involving quniv*)
val codatatype_intrs =
[QSigmaI, QInlI, QInrI,
QPair_in_quniv, QInl_in_quniv, QInr_in_quniv,
zero_in_quniv, A_into_quniv, nat_into_quniv, UnCI];
val codatatype_elims = [make_elim QInlD, make_elim QInrD];