(* Title: HOL/TPTP/TPTP_Parser_Example.thy
Author: Nik Sultana, Cambridge University Computer Laboratory
Example of importing a TPTP problem and trying to prove it in Isabelle/HOL.
*)
theory TPTP_Parser_Example
imports TPTP_Parser TPTP_Interpret
begin
import_tptp "$TPTP/Problems/LCL/LCL414+1.p"
ML \<open>
val an_fmlas =
TPTP_Interpret.get_manifests @{theory}
|> hd (*FIXME use named lookup*)
|> #2 (*get problem contents*)
|> #3 (*get formulas*)
\<close>
(*Display nicely.*)
ML \<open>
List.app (fn (n, role, fmla, _) =>
Pretty.writeln
(Pretty.block [Pretty.str ("\"" ^ n ^ "\"" ^ "(" ^
TPTP_Syntax.role_to_string role ^ "): "), Syntax.pretty_term @{context} fmla])
) (rev an_fmlas)
\<close>
ML \<open>
(*Extract the (name, term) pairs of formulas having roles belonging to a
user-supplied set*)
fun extract_terms roles : TPTP_Interpret.tptp_formula_meaning list ->
(string * term) list =
let
fun role_predicate (_, role, _, _) =
fold (fn r1 => fn b => role = r1 orelse b) roles false
in filter role_predicate #> map (fn (n, _, t, _) => (n, t)) end
\<close>
ML \<open>
(*Use a given tactic on a goal*)
fun prove_conjectures tactic ctxt an_fmlas =
let
val assumptions =
extract_terms
[TPTP_Syntax.Role_Definition, TPTP_Syntax.Role_Axiom]
an_fmlas
|> map snd
val goals = extract_terms [TPTP_Syntax.Role_Conjecture] an_fmlas
fun driver (n, goal) =
(n, Goal.prove ctxt [] assumptions goal (fn _ => tactic ctxt))
in map driver goals end
val auto_prove = prove_conjectures auto_tac
val sh_prove = prove_conjectures (fn ctxt =>
Sledgehammer_Tactics.sledgehammer_with_metis_tac ctxt []
(*FIXME use relevance_override*)
{add = [], del = [], only = false} 1)
\<close>
ML \<open>
@{assert} (is_some (try (auto_prove @{context}) an_fmlas) = false)
\<close>
sledgehammer_params [provers = z3, debug]
ML \<open>
@{assert} (is_some (try (sh_prove @{context}) an_fmlas) = true)
\<close>
end