src/ZF/qpair.thy
author wenzelm
Thu, 08 Aug 2002 23:51:24 +0200
changeset 13486 54464ea94d6f
parent 124 858ab9a9b047
permissions -rw-r--r--
exception SIMPROC_FAIL: solid error reporting of simprocs;

(*  Title: 	ZF/qpair.thy
    ID:         $Id$
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1993  University of Cambridge

Quine-inspired ordered pairs and disjoint sums, for non-well-founded data
structures in ZF.  Does not precisely follow Quine's construction.  Thanks
to Thomas Forster for suggesting this approach!

W. V. Quine, On Ordered Pairs and Relations, in Selected Logic Papers,
1966.
*)

QPair = Sum + "simpdata" +
consts
  QPair     :: "[i, i] => i"               	("<(_;/ _)>")
  qsplit    :: "[[i,i] => i, i] => i"
  qfsplit   :: "[[i,i] => o, i] => o"
  qconverse :: "i => i"
  "@QSUM"   :: "[idt, i, i] => i"               ("(3QSUM _:_./ _)" 10)
  " <*>"    :: "[i, i] => i"         		("(_ <*>/ _)" [81, 80] 80)
  QSigma    :: "[i, i => i] => i"

  "<+>"     :: "[i,i]=>i"      			(infixr 65)
  QInl,QInr :: "i=>i"
  qcase     :: "[i=>i, i=>i, i]=>i"

translations
  "QSUM x:A. B"  => "QSigma(A, %x. B)"
  "A <*> B"      => "QSigma(A, _K(B))"

rules
  QPair_def       "<a;b> == a+b"
  qsplit_def      "qsplit(c,p)  == THE y. EX a b. p=<a;b> & y=c(a,b)"
  qfsplit_def     "qfsplit(R,z) == EX x y. z=<x;y> & R(x,y)"
  qconverse_def   "qconverse(r) == {z. w:r, EX x y. w=<x;y> & z=<y;x>}"
  QSigma_def      "QSigma(A,B)  ==  UN x:A. UN y:B(x). {<x;y>}"

  qsum_def        "A <+> B      == ({0} <*> A) Un ({1} <*> B)"
  QInl_def        "QInl(a)      == <0;a>"
  QInr_def        "QInr(b)      == <1;b>"
  qcase_def       "qcase(c,d)   == qsplit(%y z. cond(y, d(z), c(z)))"
end

ML

val print_translation =
  [("QSigma", dependent_tr' ("@QSUM", " <*>"))];