(* Title: ZF/Fixedpt.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
*)
section\<open>Least and Greatest Fixed Points; the Knaster-Tarski Theorem\<close>
theory Fixedpt imports equalities begin
definition
(*monotone operator from Pow(D) to itself*)
bnd_mono :: "[i,i\<Rightarrow>i]\<Rightarrow>o" where
"bnd_mono(D,h) \<equiv> h(D)<=D \<and> (\<forall>W X. W<=X \<longrightarrow> X<=D \<longrightarrow> h(W) \<subseteq> h(X))"
definition
lfp :: "[i,i\<Rightarrow>i]\<Rightarrow>i" where
"lfp(D,h) \<equiv> \<Inter>({X: Pow(D). h(X) \<subseteq> X})"
definition
gfp :: "[i,i\<Rightarrow>i]\<Rightarrow>i" where
"gfp(D,h) \<equiv> \<Union>({X: Pow(D). X \<subseteq> h(X)})"
text\<open>The theorem is proved in the lattice of subsets of \<^term>\<open>D\<close>,
namely \<^term>\<open>Pow(D)\<close>, with Inter as the greatest lower bound.\<close>
subsection\<open>Monotone Operators\<close>
lemma bnd_monoI:
"\<lbrakk>h(D)<=D;
\<And>W X. \<lbrakk>W<=D; X<=D; W<=X\<rbrakk> \<Longrightarrow> h(W) \<subseteq> h(X)
\<rbrakk> \<Longrightarrow> bnd_mono(D,h)"
by (unfold bnd_mono_def, clarify, blast)
lemma bnd_monoD1: "bnd_mono(D,h) \<Longrightarrow> h(D) \<subseteq> D"
unfolding bnd_mono_def
apply (erule conjunct1)
done
lemma bnd_monoD2: "\<lbrakk>bnd_mono(D,h); W<=X; X<=D\<rbrakk> \<Longrightarrow> h(W) \<subseteq> h(X)"
by (unfold bnd_mono_def, blast)
lemma bnd_mono_subset:
"\<lbrakk>bnd_mono(D,h); X<=D\<rbrakk> \<Longrightarrow> h(X) \<subseteq> D"
by (unfold bnd_mono_def, clarify, blast)
lemma bnd_mono_Un:
"\<lbrakk>bnd_mono(D,h); A \<subseteq> D; B \<subseteq> D\<rbrakk> \<Longrightarrow> h(A) \<union> h(B) \<subseteq> h(A \<union> B)"
unfolding bnd_mono_def
apply (rule Un_least, blast+)
done
(*unused*)
lemma bnd_mono_UN:
"\<lbrakk>bnd_mono(D,h); \<forall>i\<in>I. A(i) \<subseteq> D\<rbrakk>
\<Longrightarrow> (\<Union>i\<in>I. h(A(i))) \<subseteq> h((\<Union>i\<in>I. A(i)))"
unfolding bnd_mono_def
apply (rule UN_least)
apply (elim conjE)
apply (drule_tac x="A(i)" in spec)
apply (drule_tac x="(\<Union>i\<in>I. A(i))" in spec)
apply blast
done
(*Useful??*)
lemma bnd_mono_Int:
"\<lbrakk>bnd_mono(D,h); A \<subseteq> D; B \<subseteq> D\<rbrakk> \<Longrightarrow> h(A \<inter> B) \<subseteq> h(A) \<inter> h(B)"
apply (rule Int_greatest)
apply (erule bnd_monoD2, rule Int_lower1, assumption)
apply (erule bnd_monoD2, rule Int_lower2, assumption)
done
subsection\<open>Proof of Knaster-Tarski Theorem using \<^term>\<open>lfp\<close>\<close>
(*lfp is contained in each pre-fixedpoint*)
lemma lfp_lowerbound:
"\<lbrakk>h(A) \<subseteq> A; A<=D\<rbrakk> \<Longrightarrow> lfp(D,h) \<subseteq> A"
by (unfold lfp_def, blast)
(*Unfolding the defn of Inter dispenses with the premise bnd_mono(D,h)!*)
lemma lfp_subset: "lfp(D,h) \<subseteq> D"
by (unfold lfp_def Inter_def, blast)
(*Used in datatype package*)
lemma def_lfp_subset: "A \<equiv> lfp(D,h) \<Longrightarrow> A \<subseteq> D"
apply simp
apply (rule lfp_subset)
done
lemma lfp_greatest:
"\<lbrakk>h(D) \<subseteq> D; \<And>X. \<lbrakk>h(X) \<subseteq> X; X<=D\<rbrakk> \<Longrightarrow> A<=X\<rbrakk> \<Longrightarrow> A \<subseteq> lfp(D,h)"
by (unfold lfp_def, blast)
lemma lfp_lemma1:
"\<lbrakk>bnd_mono(D,h); h(A)<=A; A<=D\<rbrakk> \<Longrightarrow> h(lfp(D,h)) \<subseteq> A"
apply (erule bnd_monoD2 [THEN subset_trans])
apply (rule lfp_lowerbound, assumption+)
done
lemma lfp_lemma2: "bnd_mono(D,h) \<Longrightarrow> h(lfp(D,h)) \<subseteq> lfp(D,h)"
apply (rule bnd_monoD1 [THEN lfp_greatest])
apply (rule_tac [2] lfp_lemma1)
apply (assumption+)
done
lemma lfp_lemma3:
"bnd_mono(D,h) \<Longrightarrow> lfp(D,h) \<subseteq> h(lfp(D,h))"
apply (rule lfp_lowerbound)
apply (rule bnd_monoD2, assumption)
apply (rule lfp_lemma2, assumption)
apply (erule_tac [2] bnd_mono_subset)
apply (rule lfp_subset)+
done
lemma lfp_unfold: "bnd_mono(D,h) \<Longrightarrow> lfp(D,h) = h(lfp(D,h))"
apply (rule equalityI)
apply (erule lfp_lemma3)
apply (erule lfp_lemma2)
done
(*Definition form, to control unfolding*)
lemma def_lfp_unfold:
"\<lbrakk>A\<equiv>lfp(D,h); bnd_mono(D,h)\<rbrakk> \<Longrightarrow> A = h(A)"
apply simp
apply (erule lfp_unfold)
done
subsection\<open>General Induction Rule for Least Fixedpoints\<close>
lemma Collect_is_pre_fixedpt:
"\<lbrakk>bnd_mono(D,h); \<And>x. x \<in> h(Collect(lfp(D,h),P)) \<Longrightarrow> P(x)\<rbrakk>
\<Longrightarrow> h(Collect(lfp(D,h),P)) \<subseteq> Collect(lfp(D,h),P)"
by (blast intro: lfp_lemma2 [THEN subsetD] bnd_monoD2 [THEN subsetD]
lfp_subset [THEN subsetD])
(*This rule yields an induction hypothesis in which the components of a
data structure may be assumed to be elements of lfp(D,h)*)
lemma induct:
"\<lbrakk>bnd_mono(D,h); a \<in> lfp(D,h);
\<And>x. x \<in> h(Collect(lfp(D,h),P)) \<Longrightarrow> P(x)
\<rbrakk> \<Longrightarrow> P(a)"
apply (rule Collect_is_pre_fixedpt
[THEN lfp_lowerbound, THEN subsetD, THEN CollectD2])
apply (rule_tac [3] lfp_subset [THEN Collect_subset [THEN subset_trans]],
blast+)
done
(*Definition form, to control unfolding*)
lemma def_induct:
"\<lbrakk>A \<equiv> lfp(D,h); bnd_mono(D,h); a:A;
\<And>x. x \<in> h(Collect(A,P)) \<Longrightarrow> P(x)
\<rbrakk> \<Longrightarrow> P(a)"
by (rule induct, blast+)
(*This version is useful when "A" is not a subset of D
second premise could simply be h(D \<inter> A) \<subseteq> D or \<And>X. X<=D \<Longrightarrow> h(X)<=D *)
lemma lfp_Int_lowerbound:
"\<lbrakk>h(D \<inter> A) \<subseteq> A; bnd_mono(D,h)\<rbrakk> \<Longrightarrow> lfp(D,h) \<subseteq> A"
apply (rule lfp_lowerbound [THEN subset_trans])
apply (erule bnd_mono_subset [THEN Int_greatest], blast+)
done
(*Monotonicity of lfp, where h precedes i under a domain-like partial order
monotonicity of h is not strictly necessary; h must be bounded by D*)
lemma lfp_mono:
assumes hmono: "bnd_mono(D,h)"
and imono: "bnd_mono(E,i)"
and subhi: "\<And>X. X<=D \<Longrightarrow> h(X) \<subseteq> i(X)"
shows "lfp(D,h) \<subseteq> lfp(E,i)"
apply (rule bnd_monoD1 [THEN lfp_greatest])
apply (rule imono)
apply (rule hmono [THEN [2] lfp_Int_lowerbound])
apply (rule Int_lower1 [THEN subhi, THEN subset_trans])
apply (rule imono [THEN bnd_monoD2, THEN subset_trans], auto)
done
(*This (unused) version illustrates that monotonicity is not really needed,
but both lfp's must be over the SAME set D; Inter is anti-monotonic!*)
lemma lfp_mono2:
"\<lbrakk>i(D) \<subseteq> D; \<And>X. X<=D \<Longrightarrow> h(X) \<subseteq> i(X)\<rbrakk> \<Longrightarrow> lfp(D,h) \<subseteq> lfp(D,i)"
apply (rule lfp_greatest, assumption)
apply (rule lfp_lowerbound, blast, assumption)
done
lemma lfp_cong:
"\<lbrakk>D=D'; \<And>X. X \<subseteq> D' \<Longrightarrow> h(X) = h'(X)\<rbrakk> \<Longrightarrow> lfp(D,h) = lfp(D',h')"
apply (simp add: lfp_def)
apply (rule_tac t=Inter in subst_context)
apply (rule Collect_cong, simp_all)
done
subsection\<open>Proof of Knaster-Tarski Theorem using \<^term>\<open>gfp\<close>\<close>
(*gfp contains each post-fixedpoint that is contained in D*)
lemma gfp_upperbound: "\<lbrakk>A \<subseteq> h(A); A<=D\<rbrakk> \<Longrightarrow> A \<subseteq> gfp(D,h)"
unfolding gfp_def
apply (rule PowI [THEN CollectI, THEN Union_upper])
apply (assumption+)
done
lemma gfp_subset: "gfp(D,h) \<subseteq> D"
by (unfold gfp_def, blast)
(*Used in datatype package*)
lemma def_gfp_subset: "A\<equiv>gfp(D,h) \<Longrightarrow> A \<subseteq> D"
apply simp
apply (rule gfp_subset)
done
lemma gfp_least:
"\<lbrakk>bnd_mono(D,h); \<And>X. \<lbrakk>X \<subseteq> h(X); X<=D\<rbrakk> \<Longrightarrow> X<=A\<rbrakk> \<Longrightarrow>
gfp(D,h) \<subseteq> A"
unfolding gfp_def
apply (blast dest: bnd_monoD1)
done
lemma gfp_lemma1:
"\<lbrakk>bnd_mono(D,h); A<=h(A); A<=D\<rbrakk> \<Longrightarrow> A \<subseteq> h(gfp(D,h))"
apply (rule subset_trans, assumption)
apply (erule bnd_monoD2)
apply (rule_tac [2] gfp_subset)
apply (simp add: gfp_upperbound)
done
lemma gfp_lemma2: "bnd_mono(D,h) \<Longrightarrow> gfp(D,h) \<subseteq> h(gfp(D,h))"
apply (rule gfp_least)
apply (rule_tac [2] gfp_lemma1)
apply (assumption+)
done
lemma gfp_lemma3:
"bnd_mono(D,h) \<Longrightarrow> h(gfp(D,h)) \<subseteq> gfp(D,h)"
apply (rule gfp_upperbound)
apply (rule bnd_monoD2, assumption)
apply (rule gfp_lemma2, assumption)
apply (erule bnd_mono_subset, rule gfp_subset)+
done
lemma gfp_unfold: "bnd_mono(D,h) \<Longrightarrow> gfp(D,h) = h(gfp(D,h))"
apply (rule equalityI)
apply (erule gfp_lemma2)
apply (erule gfp_lemma3)
done
(*Definition form, to control unfolding*)
lemma def_gfp_unfold:
"\<lbrakk>A\<equiv>gfp(D,h); bnd_mono(D,h)\<rbrakk> \<Longrightarrow> A = h(A)"
apply simp
apply (erule gfp_unfold)
done
subsection\<open>Coinduction Rules for Greatest Fixed Points\<close>
(*weak version*)
lemma weak_coinduct: "\<lbrakk>a: X; X \<subseteq> h(X); X \<subseteq> D\<rbrakk> \<Longrightarrow> a \<in> gfp(D,h)"
by (blast intro: gfp_upperbound [THEN subsetD])
lemma coinduct_lemma:
"\<lbrakk>X \<subseteq> h(X \<union> gfp(D,h)); X \<subseteq> D; bnd_mono(D,h)\<rbrakk> \<Longrightarrow>
X \<union> gfp(D,h) \<subseteq> h(X \<union> gfp(D,h))"
apply (erule Un_least)
apply (rule gfp_lemma2 [THEN subset_trans], assumption)
apply (rule Un_upper2 [THEN subset_trans])
apply (rule bnd_mono_Un, assumption+)
apply (rule gfp_subset)
done
(*strong version*)
lemma coinduct:
"\<lbrakk>bnd_mono(D,h); a: X; X \<subseteq> h(X \<union> gfp(D,h)); X \<subseteq> D\<rbrakk>
\<Longrightarrow> a \<in> gfp(D,h)"
apply (rule weak_coinduct)
apply (erule_tac [2] coinduct_lemma)
apply (simp_all add: gfp_subset Un_subset_iff)
done
(*Definition form, to control unfolding*)
lemma def_coinduct:
"\<lbrakk>A \<equiv> gfp(D,h); bnd_mono(D,h); a: X; X \<subseteq> h(X \<union> A); X \<subseteq> D\<rbrakk> \<Longrightarrow>
a \<in> A"
apply simp
apply (rule coinduct, assumption+)
done
(*The version used in the induction/coinduction package*)
lemma def_Collect_coinduct:
"\<lbrakk>A \<equiv> gfp(D, \<lambda>w. Collect(D,P(w))); bnd_mono(D, \<lambda>w. Collect(D,P(w)));
a: X; X \<subseteq> D; \<And>z. z: X \<Longrightarrow> P(X \<union> A, z)\<rbrakk> \<Longrightarrow>
a \<in> A"
apply (rule def_coinduct, assumption+, blast+)
done
(*Monotonicity of gfp!*)
lemma gfp_mono:
"\<lbrakk>bnd_mono(D,h); D \<subseteq> E;
\<And>X. X<=D \<Longrightarrow> h(X) \<subseteq> i(X)\<rbrakk> \<Longrightarrow> gfp(D,h) \<subseteq> gfp(E,i)"
apply (rule gfp_upperbound)
apply (rule gfp_lemma2 [THEN subset_trans], assumption)
apply (blast del: subsetI intro: gfp_subset)
apply (blast del: subsetI intro: subset_trans gfp_subset)
done
end