(* Title: CTT/Arith.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1991 University of Cambridge
*)
section \<open>Elementary arithmetic\<close>
theory Arith
imports Bool
begin
subsection \<open>Arithmetic operators and their definitions\<close>
definition
add :: "[i,i]\<Rightarrow>i" (infixr "#+" 65) where
"a#+b \<equiv> rec(a, b, \<lambda>u v. succ(v))"
definition
diff :: "[i,i]\<Rightarrow>i" (infixr "-" 65) where
"a-b \<equiv> rec(b, a, \<lambda>u v. rec(v, 0, \<lambda>x y. x))"
definition
absdiff :: "[i,i]\<Rightarrow>i" (infixr "|-|" 65) where
"a|-|b \<equiv> (a-b) #+ (b-a)"
definition
mult :: "[i,i]\<Rightarrow>i" (infixr "#*" 70) where
"a#*b \<equiv> rec(a, 0, \<lambda>u v. b #+ v)"
definition
mod :: "[i,i]\<Rightarrow>i" (infixr "mod" 70) where
"a mod b \<equiv> rec(a, 0, \<lambda>u v. rec(succ(v) |-| b, 0, \<lambda>x y. succ(v)))"
definition
div :: "[i,i]\<Rightarrow>i" (infixr "div" 70) where
"a div b \<equiv> rec(a, 0, \<lambda>u v. rec(succ(u) mod b, succ(v), \<lambda>x y. v))"
lemmas arith_defs = add_def diff_def absdiff_def mult_def mod_def div_def
subsection \<open>Proofs about elementary arithmetic: addition, multiplication, etc.\<close>
(** Addition *)
(*typing of add: short and long versions*)
lemma add_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #+ b : N"
apply (unfold arith_defs)
apply typechk
done
lemma add_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a #+ b = c #+ d : N"
apply (unfold arith_defs)
apply equal
done
(*computation for add: 0 and successor cases*)
lemma addC0: "b:N \<Longrightarrow> 0 #+ b = b : N"
apply (unfold arith_defs)
apply rew
done
lemma addC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) #+ b = succ(a #+ b) : N"
apply (unfold arith_defs)
apply rew
done
(** Multiplication *)
(*typing of mult: short and long versions*)
lemma mult_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #* b : N"
apply (unfold arith_defs)
apply (typechk add_typing)
done
lemma mult_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a #* b = c #* d : N"
apply (unfold arith_defs)
apply (equal add_typingL)
done
(*computation for mult: 0 and successor cases*)
lemma multC0: "b:N \<Longrightarrow> 0 #* b = 0 : N"
apply (unfold arith_defs)
apply rew
done
lemma multC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) #* b = b #+ (a #* b) : N"
apply (unfold arith_defs)
apply rew
done
(** Difference *)
(*typing of difference*)
lemma diff_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a - b : N"
apply (unfold arith_defs)
apply typechk
done
lemma diff_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a - b = c - d : N"
apply (unfold arith_defs)
apply equal
done
(*computation for difference: 0 and successor cases*)
lemma diffC0: "a:N \<Longrightarrow> a - 0 = a : N"
apply (unfold arith_defs)
apply rew
done
(*Note: rec(a, 0, \<lambda>z w.z) is pred(a). *)
lemma diff_0_eq_0: "b:N \<Longrightarrow> 0 - b = 0 : N"
apply (unfold arith_defs)
apply (NE b)
apply hyp_rew
done
(*Essential to simplify FIRST!! (Else we get a critical pair)
succ(a) - succ(b) rewrites to pred(succ(a) - b) *)
lemma diff_succ_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) - succ(b) = a - b : N"
apply (unfold arith_defs)
apply hyp_rew
apply (NE b)
apply hyp_rew
done
subsection \<open>Simplification\<close>
lemmas arith_typing_rls = add_typing mult_typing diff_typing
and arith_congr_rls = add_typingL mult_typingL diff_typingL
lemmas congr_rls = arith_congr_rls intrL2_rls elimL_rls
lemmas arithC_rls =
addC0 addC_succ
multC0 multC_succ
diffC0 diff_0_eq_0 diff_succ_succ
ML \<open>
structure Arith_simp_data: TSIMP_DATA =
struct
val refl = @{thm refl_elem}
val sym = @{thm sym_elem}
val trans = @{thm trans_elem}
val refl_red = @{thm refl_red}
val trans_red = @{thm trans_red}
val red_if_equal = @{thm red_if_equal}
val default_rls = @{thms arithC_rls} @ @{thms comp_rls}
val routine_tac = routine_tac (@{thms arith_typing_rls} @ @{thms routine_rls})
end
structure Arith_simp = TSimpFun (Arith_simp_data)
local val congr_rls = @{thms congr_rls} in
fun arith_rew_tac ctxt prems = make_rew_tac ctxt
(Arith_simp.norm_tac ctxt (congr_rls, prems))
fun hyp_arith_rew_tac ctxt prems = make_rew_tac ctxt
(Arith_simp.cond_norm_tac ctxt (prove_cond_tac ctxt, congr_rls, prems))
end
\<close>
method_setup arith_rew = \<open>
Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (arith_rew_tac ctxt ths))
\<close>
method_setup hyp_arith_rew = \<open>
Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD (hyp_arith_rew_tac ctxt ths))
\<close>
subsection \<open>Addition\<close>
(*Associative law for addition*)
lemma add_assoc: "\<lbrakk>a:N; b:N; c:N\<rbrakk> \<Longrightarrow> (a #+ b) #+ c = a #+ (b #+ c) : N"
apply (NE a)
apply hyp_arith_rew
done
(*Commutative law for addition. Can be proved using three inductions.
Must simplify after first induction! Orientation of rewrites is delicate*)
lemma add_commute: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #+ b = b #+ a : N"
apply (NE a)
apply hyp_arith_rew
apply (rule sym_elem)
prefer 2
apply (NE b)
prefer 4
apply (NE b)
apply hyp_arith_rew
done
subsection \<open>Multiplication\<close>
(*right annihilation in product*)
lemma mult_0_right: "a:N \<Longrightarrow> a #* 0 = 0 : N"
apply (NE a)
apply hyp_arith_rew
done
(*right successor law for multiplication*)
lemma mult_succ_right: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #* succ(b) = a #+ (a #* b) : N"
apply (NE a)
apply (hyp_arith_rew add_assoc [THEN sym_elem])
apply (assumption | rule add_commute mult_typingL add_typingL intrL_rls refl_elem)+
done
(*Commutative law for multiplication*)
lemma mult_commute: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a #* b = b #* a : N"
apply (NE a)
apply (hyp_arith_rew mult_0_right mult_succ_right)
done
(*addition distributes over multiplication*)
lemma add_mult_distrib: "\<lbrakk>a:N; b:N; c:N\<rbrakk> \<Longrightarrow> (a #+ b) #* c = (a #* c) #+ (b #* c) : N"
apply (NE a)
apply (hyp_arith_rew add_assoc [THEN sym_elem])
done
(*Associative law for multiplication*)
lemma mult_assoc: "\<lbrakk>a:N; b:N; c:N\<rbrakk> \<Longrightarrow> (a #* b) #* c = a #* (b #* c) : N"
apply (NE a)
apply (hyp_arith_rew add_mult_distrib)
done
subsection \<open>Difference\<close>
text \<open>
Difference on natural numbers, without negative numbers
a - b = 0 iff a<=b a - b = succ(c) iff a>b\<close>
lemma diff_self_eq_0: "a:N \<Longrightarrow> a - a = 0 : N"
apply (NE a)
apply hyp_arith_rew
done
lemma add_0_right: "\<lbrakk>c : N; 0 : N; c : N\<rbrakk> \<Longrightarrow> c #+ 0 = c : N"
by (rule addC0 [THEN [3] add_commute [THEN trans_elem]])
(*Addition is the inverse of subtraction: if b<=x then b#+(x-b) = x.
An example of induction over a quantified formula (a product).
Uses rewriting with a quantified, implicative inductive hypothesis.*)
schematic_goal add_diff_inverse_lemma:
"b:N \<Longrightarrow> ?a : \<Prod>x:N. Eq(N, b-x, 0) \<longrightarrow> Eq(N, b #+ (x-b), x)"
apply (NE b)
(*strip one "universal quantifier" but not the "implication"*)
apply (rule_tac [3] intr_rls)
(*case analysis on x in
(succ(u) <= x) \<longrightarrow> (succ(u)#+(x-succ(u)) = x) *)
prefer 4
apply (NE x)
apply assumption
(*Prepare for simplification of types -- the antecedent succ(u)<=x *)
apply (rule_tac [2] replace_type)
apply (rule_tac [1] replace_type)
apply arith_rew
(*Solves first 0 goal, simplifies others. Two sugbgoals remain.
Both follow by rewriting, (2) using quantified induction hyp*)
apply intr (*strips remaining PRODs*)
apply (hyp_arith_rew add_0_right)
apply assumption
done
(*Version of above with premise b-a=0 i.e. a >= b.
Using ProdE does not work -- for ?B(?a) is ambiguous.
Instead, add_diff_inverse_lemma states the desired induction scheme
the use of RS below instantiates Vars in ProdE automatically. *)
lemma add_diff_inverse: "\<lbrakk>a:N; b:N; b - a = 0 : N\<rbrakk> \<Longrightarrow> b #+ (a-b) = a : N"
apply (rule EqE)
apply (rule add_diff_inverse_lemma [THEN ProdE, THEN ProdE])
apply (assumption | rule EqI)+
done
subsection \<open>Absolute difference\<close>
(*typing of absolute difference: short and long versions*)
lemma absdiff_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a |-| b : N"
apply (unfold arith_defs)
apply typechk
done
lemma absdiff_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a |-| b = c |-| d : N"
apply (unfold arith_defs)
apply equal
done
lemma absdiff_self_eq_0: "a:N \<Longrightarrow> a |-| a = 0 : N"
apply (unfold absdiff_def)
apply (arith_rew diff_self_eq_0)
done
lemma absdiffC0: "a:N \<Longrightarrow> 0 |-| a = a : N"
apply (unfold absdiff_def)
apply hyp_arith_rew
done
lemma absdiff_succ_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> succ(a) |-| succ(b) = a |-| b : N"
apply (unfold absdiff_def)
apply hyp_arith_rew
done
(*Note how easy using commutative laws can be? ...not always... *)
lemma absdiff_commute: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a |-| b = b |-| a : N"
apply (unfold absdiff_def)
apply (rule add_commute)
apply (typechk diff_typing)
done
(*If a+b=0 then a=0. Surprisingly tedious*)
schematic_goal add_eq0_lemma: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> ?c : \<Prod>u: Eq(N,a#+b,0) . Eq(N,a,0)"
apply (NE a)
apply (rule_tac [3] replace_type)
apply arith_rew
apply intr (*strips remaining PRODs*)
apply (rule_tac [2] zero_ne_succ [THEN FE])
apply (erule_tac [3] EqE [THEN sym_elem])
apply (typechk add_typing)
done
(*Version of above with the premise a+b=0.
Again, resolution instantiates variables in ProdE *)
lemma add_eq0: "\<lbrakk>a:N; b:N; a #+ b = 0 : N\<rbrakk> \<Longrightarrow> a = 0 : N"
apply (rule EqE)
apply (rule add_eq0_lemma [THEN ProdE])
apply (rule_tac [3] EqI)
apply typechk
done
(*Here is a lemma to infer a-b=0 and b-a=0 from a|-|b=0, below. *)
schematic_goal absdiff_eq0_lem:
"\<lbrakk>a:N; b:N; a |-| b = 0 : N\<rbrakk> \<Longrightarrow> ?a : \<Sum>v: Eq(N, a-b, 0) . Eq(N, b-a, 0)"
apply (unfold absdiff_def)
apply intr
apply eqintr
apply (rule_tac [2] add_eq0)
apply (rule add_eq0)
apply (rule_tac [6] add_commute [THEN trans_elem])
apply (typechk diff_typing)
done
(*if a |-| b = 0 then a = b
proof: a-b=0 and b-a=0, so b = a+(b-a) = a+0 = a*)
lemma absdiff_eq0: "\<lbrakk>a |-| b = 0 : N; a:N; b:N\<rbrakk> \<Longrightarrow> a = b : N"
apply (rule EqE)
apply (rule absdiff_eq0_lem [THEN SumE])
apply eqintr
apply (rule add_diff_inverse [THEN sym_elem, THEN trans_elem])
apply (erule_tac [3] EqE)
apply (hyp_arith_rew add_0_right)
done
subsection \<open>Remainder and Quotient\<close>
(*typing of remainder: short and long versions*)
lemma mod_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a mod b : N"
apply (unfold mod_def)
apply (typechk absdiff_typing)
done
lemma mod_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a mod b = c mod d : N"
apply (unfold mod_def)
apply (equal absdiff_typingL)
done
(*computation for mod : 0 and successor cases*)
lemma modC0: "b:N \<Longrightarrow> 0 mod b = 0 : N"
apply (unfold mod_def)
apply (rew absdiff_typing)
done
lemma modC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow>
succ(a) mod b = rec(succ(a mod b) |-| b, 0, \<lambda>x y. succ(a mod b)) : N"
apply (unfold mod_def)
apply (rew absdiff_typing)
done
(*typing of quotient: short and long versions*)
lemma div_typing: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a div b : N"
apply (unfold div_def)
apply (typechk absdiff_typing mod_typing)
done
lemma div_typingL: "\<lbrakk>a = c:N; b = d:N\<rbrakk> \<Longrightarrow> a div b = c div d : N"
apply (unfold div_def)
apply (equal absdiff_typingL mod_typingL)
done
lemmas div_typing_rls = mod_typing div_typing absdiff_typing
(*computation for quotient: 0 and successor cases*)
lemma divC0: "b:N \<Longrightarrow> 0 div b = 0 : N"
apply (unfold div_def)
apply (rew mod_typing absdiff_typing)
done
lemma divC_succ: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow>
succ(a) div b = rec(succ(a) mod b, succ(a div b), \<lambda>x y. a div b) : N"
apply (unfold div_def)
apply (rew mod_typing)
done
(*Version of above with same condition as the mod one*)
lemma divC_succ2: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow>
succ(a) div b =rec(succ(a mod b) |-| b, succ(a div b), \<lambda>x y. a div b) : N"
apply (rule divC_succ [THEN trans_elem])
apply (rew div_typing_rls modC_succ)
apply (NE "succ (a mod b) |-|b")
apply (rew mod_typing div_typing absdiff_typing)
done
(*for case analysis on whether a number is 0 or a successor*)
lemma iszero_decidable: "a:N \<Longrightarrow> rec(a, inl(eq), \<lambda>ka kb. inr(<ka, eq>)) :
Eq(N,a,0) + (\<Sum>x:N. Eq(N,a, succ(x)))"
apply (NE a)
apply (rule_tac [3] PlusI_inr)
apply (rule_tac [2] PlusI_inl)
apply eqintr
apply equal
done
(*Main Result. Holds when b is 0 since a mod 0 = a and a div 0 = 0 *)
lemma mod_div_equality: "\<lbrakk>a:N; b:N\<rbrakk> \<Longrightarrow> a mod b #+ (a div b) #* b = a : N"
apply (NE a)
apply (arith_rew div_typing_rls modC0 modC_succ divC0 divC_succ2)
apply (rule EqE)
(*case analysis on succ(u mod b)|-|b *)
apply (rule_tac a1 = "succ (u mod b) |-| b" in iszero_decidable [THEN PlusE])
apply (erule_tac [3] SumE)
apply (hyp_arith_rew div_typing_rls modC0 modC_succ divC0 divC_succ2)
(*Replace one occurrence of b by succ(u mod b). Clumsy!*)
apply (rule add_typingL [THEN trans_elem])
apply (erule EqE [THEN absdiff_eq0, THEN sym_elem])
apply (rule_tac [3] refl_elem)
apply (hyp_arith_rew div_typing_rls)
done
end