src/ZF/qpair.thy
author paulson
Thu, 12 Jul 2001 16:36:26 +0200
changeset 11412 54dd65d0ae87
parent 124 858ab9a9b047
permissions -rw-r--r--
more in the Springer style

(*  Title: 	ZF/qpair.thy
    ID:         $Id$
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1993  University of Cambridge

Quine-inspired ordered pairs and disjoint sums, for non-well-founded data
structures in ZF.  Does not precisely follow Quine's construction.  Thanks
to Thomas Forster for suggesting this approach!

W. V. Quine, On Ordered Pairs and Relations, in Selected Logic Papers,
1966.
*)

QPair = Sum + "simpdata" +
consts
  QPair     :: "[i, i] => i"               	("<(_;/ _)>")
  qsplit    :: "[[i,i] => i, i] => i"
  qfsplit   :: "[[i,i] => o, i] => o"
  qconverse :: "i => i"
  "@QSUM"   :: "[idt, i, i] => i"               ("(3QSUM _:_./ _)" 10)
  " <*>"    :: "[i, i] => i"         		("(_ <*>/ _)" [81, 80] 80)
  QSigma    :: "[i, i => i] => i"

  "<+>"     :: "[i,i]=>i"      			(infixr 65)
  QInl,QInr :: "i=>i"
  qcase     :: "[i=>i, i=>i, i]=>i"

translations
  "QSUM x:A. B"  => "QSigma(A, %x. B)"
  "A <*> B"      => "QSigma(A, _K(B))"

rules
  QPair_def       "<a;b> == a+b"
  qsplit_def      "qsplit(c,p)  == THE y. EX a b. p=<a;b> & y=c(a,b)"
  qfsplit_def     "qfsplit(R,z) == EX x y. z=<x;y> & R(x,y)"
  qconverse_def   "qconverse(r) == {z. w:r, EX x y. w=<x;y> & z=<y;x>}"
  QSigma_def      "QSigma(A,B)  ==  UN x:A. UN y:B(x). {<x;y>}"

  qsum_def        "A <+> B      == ({0} <*> A) Un ({1} <*> B)"
  QInl_def        "QInl(a)      == <0;a>"
  QInr_def        "QInr(b)      == <1;b>"
  qcase_def       "qcase(c,d)   == qsplit(%y z. cond(y, d(z), c(z)))"
end

ML

val print_translation =
  [("QSigma", dependent_tr' ("@QSUM", " <*>"))];