(* Title: Tools/Code/code_target.ML
Author: Florian Haftmann, TU Muenchen
Generic infrastructure for target language data.
*)
signature CODE_TARGET =
sig
val cert_tyco: Proof.context -> string -> string
val read_tyco: Proof.context -> string -> string
val export_code_for: Proof.context -> Path.T option -> string -> int option -> string -> Token.T list
-> Code_Thingol.program -> bool -> Code_Symbol.T list -> unit
val produce_code_for: Proof.context -> string -> int option -> string -> Token.T list
-> Code_Thingol.program -> bool -> Code_Symbol.T list -> (string * string) list * string option list
val present_code_for: Proof.context -> string -> int option -> string -> Token.T list
-> Code_Thingol.program -> Code_Symbol.T list * Code_Symbol.T list -> string
val check_code_for: Proof.context -> string -> bool -> Token.T list
-> Code_Thingol.program -> bool -> Code_Symbol.T list -> unit
val export_code: Proof.context -> bool -> string list
-> (((string * string) * Path.T option) * Token.T list) list -> unit
val produce_code: Proof.context -> bool -> string list
-> string -> int option -> string -> Token.T list -> (string * string) list * string option list
val present_code: Proof.context -> string list -> Code_Symbol.T list
-> string -> int option -> string -> Token.T list -> string
val check_code: Proof.context -> bool -> string list
-> ((string * bool) * Token.T list) list -> unit
val generatedN: string
val compilation_text: Proof.context -> string -> Code_Thingol.program
-> Code_Symbol.T list -> bool -> ((string * class list) list * Code_Thingol.itype) * Code_Thingol.iterm
-> (string * string) list * string
val compilation_text': Proof.context -> string -> string option -> Code_Thingol.program
-> Code_Symbol.T list -> bool -> ((string * class list) list * Code_Thingol.itype) * Code_Thingol.iterm
-> ((string * string) list * string) * (Code_Symbol.T -> string option)
type serializer
type literals = Code_Printer.literals
type language
type ancestry
val assert_target: theory -> string -> string
val add_language: string * language -> theory -> theory
val add_derived_target: string * ancestry -> theory -> theory
val the_literals: Proof.context -> string -> literals
type serialization
val parse_args: 'a parser -> Token.T list -> 'a
val serialization: (int -> Path.T option -> 'a -> unit)
-> (Code_Symbol.T list -> int -> 'a -> (string * string) list * (Code_Symbol.T -> string option))
-> 'a -> serialization
val default_code_width: int Config.T
type ('a, 'b, 'c, 'd, 'e, 'f) symbol_attr_decl
val set_identifiers: (string, string, string, string, string, string) symbol_attr_decl
-> theory -> theory
val set_printings: (Code_Printer.raw_const_syntax, Code_Printer.tyco_syntax, string, unit, unit, (string * string list)) symbol_attr_decl
-> theory -> theory
val add_reserved: string -> string -> theory -> theory
end;
structure Code_Target : CODE_TARGET =
struct
open Basic_Code_Symbol;
open Basic_Code_Thingol;
type literals = Code_Printer.literals;
type ('a, 'b, 'c, 'd, 'e, 'f) symbol_attr_decl =
(string * (string * 'a option) list, string * (string * 'b option) list,
class * (string * 'c option) list, (class * class) * (string * 'd option) list,
(class * string) * (string * 'e option) list,
string * (string * 'f option) list) Code_Symbol.attr;
type tyco_syntax = Code_Printer.tyco_syntax;
type raw_const_syntax = Code_Printer.raw_const_syntax;
(** checking and parsing of symbols **)
fun cert_const ctxt const =
let
val _ = if Sign.declared_const (Proof_Context.theory_of ctxt) const then ()
else error ("No such constant: " ^ quote const);
in const end;
fun read_const ctxt = Code.read_const (Proof_Context.theory_of ctxt);
fun cert_tyco ctxt tyco =
let
val _ = if Sign.declared_tyname (Proof_Context.theory_of ctxt) tyco then ()
else error ("No such type constructor: " ^ quote tyco);
in tyco end;
fun read_tyco ctxt =
#1 o dest_Type o Proof_Context.read_type_name {proper = true, strict = true} ctxt;
fun cert_class ctxt class =
let
val _ = Axclass.get_info (Proof_Context.theory_of ctxt) class;
in class end;
val parse_classrel_ident = Parse.class --| @{keyword "<"} -- Parse.class;
fun cert_inst ctxt (class, tyco) =
(cert_class ctxt class, cert_tyco ctxt tyco);
fun read_inst ctxt (raw_tyco, raw_class) =
(read_tyco ctxt raw_tyco, Proof_Context.read_class ctxt raw_class);
val parse_inst_ident = Parse.name --| @{keyword "::"} -- Parse.class;
fun cert_syms ctxt =
Code_Symbol.map_attr (apfst (cert_const ctxt)) (apfst (cert_tyco ctxt))
(apfst (cert_class ctxt)) ((apfst o apply2) (cert_class ctxt)) (apfst (cert_inst ctxt)) I;
fun read_syms ctxt =
Code_Symbol.map_attr (apfst (read_const ctxt)) (apfst (read_tyco ctxt))
(apfst (Proof_Context.read_class ctxt)) ((apfst o apply2) (Proof_Context.read_class ctxt)) (apfst (read_inst ctxt)) I;
fun check_name is_module s =
let
val _ = if s = "" then error "Bad empty code name" else ();
val xs = Long_Name.explode s;
val xs' = if is_module
then map (Name.desymbolize NONE) xs
else if length xs < 2
then error ("Bad code name without module component: " ^ quote s)
else
let
val (ys, y) = split_last xs;
val ys' = map (Name.desymbolize NONE) ys;
val y' = Name.desymbolize NONE y;
in ys' @ [y'] end;
in if xs' = xs
then if is_module then (xs, "") else split_last xs
else error ("Invalid code name: " ^ quote s ^ "\n"
^ "better try " ^ quote (Long_Name.implode xs'))
end;
(** serializations and serializer **)
(* serialization: abstract nonsense to cover different destinies for generated code *)
datatype destination = Export of Path.T option | Produce | Present of Code_Symbol.T list;
type serialization = int -> destination -> ((string * string) list * (Code_Symbol.T -> string option)) option;
fun serialization output _ content width (Export some_path) =
(output width some_path content; NONE)
| serialization _ string content width Produce =
string [] width content |> SOME
| serialization _ string content width (Present syms) =
string syms width content
|> (apfst o map o apsnd) Output.output
|> SOME;
fun export some_path f = (f (Export some_path); ());
fun produce f = the (f Produce);
fun present syms f = space_implode "\n\n" (map snd (fst (the (f (Present syms)))));
(* serializers: functions producing serializations *)
type serializer = Token.T list
-> Proof.context
-> {
module_name: string,
reserved_syms: string list,
identifiers: Code_Printer.identifiers,
includes: (string * Pretty.T) list,
class_syntax: string -> string option,
tyco_syntax: string -> Code_Printer.tyco_syntax option,
const_syntax: string -> Code_Printer.const_syntax option }
-> Code_Symbol.T list
-> Code_Thingol.program
-> serialization;
(** theory data **)
type language = { serializer: serializer, literals: literals,
check: { env_var: string, make_destination: Path.T -> Path.T, make_command: string -> string } };
type ancestry = (string * (Code_Thingol.program -> Code_Thingol.program)) list;
val merge_ancestry : ancestry * ancestry -> ancestry = AList.join (op =) (K snd);
type target = { serial: serial, language: language, ancestry: ancestry };
structure Targets = Theory_Data
(
type T = (target * Code_Printer.data) Symtab.table;
val empty = Symtab.empty;
val extend = I;
fun merge (targets1, targets2) : T =
Symtab.join (fn target_name => fn ((target1, data1), (target2, data2)) =>
if #serial target1 = #serial target2 then
({ serial = #serial target1, language = #language target1,
ancestry = merge_ancestry (#ancestry target1, #ancestry target2)},
Code_Printer.merge_data (data1, data2))
else error ("Incompatible targets: " ^ quote target_name)
) (targets1, targets2)
);
fun exists_target thy = Symtab.defined (Targets.get thy);
fun lookup_target_data thy = Symtab.lookup (Targets.get thy);
fun assert_target thy target_name =
if exists_target thy target_name
then target_name
else error ("Unknown code target language: " ^ quote target_name);
fun fold1 f xs = fold f (tl xs) (hd xs);
fun join_ancestry thy target_name =
let
val _ = assert_target thy target_name;
val the_target_data = the o lookup_target_data thy;
val (target, this_data) = the_target_data target_name;
val ancestry = #ancestry target;
val modifies = rev (map snd ancestry);
val modify = fold (curry (op o)) modifies I;
val datas = rev (map (snd o the_target_data o fst) ancestry) @ [this_data];
val data = fold1 (fn data' => fn data => Code_Printer.merge_data (data, data')) datas;
in (modify, (target, data)) end;
fun allocate_target target_name target thy =
let
val _ = if exists_target thy target_name
then error ("Attempt to overwrite existing target " ^ quote target_name)
else ();
in
thy
|> (Targets.map o Symtab.update) (target_name, (target, Code_Printer.empty_data))
end;
fun add_language (target_name, language) =
allocate_target target_name { serial = serial (), language = language, ancestry = [] };
fun add_derived_target (target_name, initial_ancestry) thy =
let
val _ = if null initial_ancestry
then error "Must derive from existing target(s)" else ();
fun the_target_data target_name' = case lookup_target_data thy target_name' of
NONE => error ("Unknown code target language: " ^ quote target_name')
| SOME target_data' => target_data';
val targets = rev (map (fst o the_target_data o fst) initial_ancestry);
val supremum = fold1 (fn target' => fn target =>
if #serial target = #serial target'
then target else error "Incompatible targets") targets;
val ancestries = map #ancestry targets @ [initial_ancestry];
val ancestry = fold1 (fn ancestry' => fn ancestry =>
merge_ancestry (ancestry, ancestry')) ancestries;
in
allocate_target target_name { serial = #serial supremum, language = #language supremum,
ancestry = ancestry } thy
end;
fun map_data target_name f thy =
let
val _ = assert_target thy target_name;
in
thy
|> (Targets.map o Symtab.map_entry target_name o apsnd o Code_Printer.map_data) f
end;
fun map_reserved target_name =
map_data target_name o @{apply 3 (1)};
fun map_identifiers target_name =
map_data target_name o @{apply 3 (2)};
fun map_printings target_name =
map_data target_name o @{apply 3 (3)};
(** serializer usage **)
(* technical aside: pretty printing width *)
val default_code_width = Attrib.setup_config_int @{binding "default_code_width"} (K 80);
(* montage *)
fun the_language ctxt =
#language o fst o the o lookup_target_data (Proof_Context.theory_of ctxt);
fun the_literals ctxt = #literals o the_language ctxt;
local
fun activate_target ctxt target_name =
let
val thy = Proof_Context.theory_of ctxt;
val (modify, target_data) = join_ancestry thy target_name;
in (target_data, modify) end;
fun project_program ctxt syms_hidden syms1 program2 =
let
val syms2 = subtract (op =) syms_hidden syms1;
val program3 = Code_Symbol.Graph.restrict (not o member (op =) syms_hidden) program2;
val syms4 = Code_Symbol.Graph.all_succs program3 syms2;
val unimplemented = Code_Thingol.unimplemented program3;
val _ =
if null unimplemented then ()
else error ("No code equations for " ^
commas (map (Proof_Context.markup_const ctxt) unimplemented));
val program4 = Code_Symbol.Graph.restrict (member (op =) syms4) program3;
in (syms4, program4) end;
fun prepare_serializer ctxt (serializer : serializer) reserved identifiers
printings module_name args proto_program syms =
let
val syms_hidden = Code_Symbol.symbols_of printings;
val (syms_all, program) = project_program ctxt syms_hidden syms proto_program;
fun select_include (name, (content, cs)) =
if null cs orelse exists (fn c => member (op =) syms_all (Constant c)) cs
then SOME (name, content) else NONE;
val includes = map_filter select_include (Code_Symbol.dest_module_data printings);
in
(serializer args ctxt {
module_name = module_name,
reserved_syms = reserved,
identifiers = identifiers,
includes = includes,
const_syntax = Code_Symbol.lookup_constant_data printings,
tyco_syntax = Code_Symbol.lookup_type_constructor_data printings,
class_syntax = Code_Symbol.lookup_type_class_data printings },
(subtract (op =) syms_hidden syms, program))
end;
fun mount_serializer ctxt target_name some_width module_name args program syms =
let
val default_width = Config.get ctxt default_code_width;
val ((target, data), modify) = activate_target ctxt target_name;
val serializer = (#serializer o #language) target;
val (prepared_serializer, (prepared_syms, prepared_program)) =
prepare_serializer ctxt serializer
(Code_Printer.the_reserved data) (Code_Printer.the_identifiers data)
(Code_Printer.the_printings data)
module_name args (modify program) syms
val width = the_default default_width some_width;
in (fn program => fn syms => prepared_serializer syms program width, (prepared_syms, prepared_program)) end;
fun invoke_serializer ctxt target_name some_width raw_module_name args program all_public syms =
let
val module_name = if raw_module_name = "" then ""
else (check_name true raw_module_name; raw_module_name)
val (mounted_serializer, (prepared_syms, prepared_program)) =
mount_serializer ctxt target_name some_width module_name args program syms;
in
Code_Preproc.timed_exec "serializing"
(fn () => mounted_serializer prepared_program (if all_public then [] else prepared_syms)) ctxt
end;
fun assert_module_name "" = error "Empty module name not allowed here"
| assert_module_name module_name = module_name;
val using_master_directory =
Option.map o File.full_path o Resources.master_directory o Proof_Context.theory_of;
in
val generatedN = "Generated_Code";
fun export_code_for ctxt some_path target_name some_width module_name args =
export (using_master_directory ctxt some_path)
ooo invoke_serializer ctxt target_name some_width module_name args;
fun produce_code_for ctxt target_name some_width module_name args =
let
val serializer = invoke_serializer ctxt target_name some_width (assert_module_name module_name) args;
in fn program => fn all_public => fn syms =>
produce (serializer program all_public syms) |> apsnd (fn deresolve => map deresolve syms)
end;
fun present_code_for ctxt target_name some_width module_name args =
let
val serializer = invoke_serializer ctxt target_name some_width (assert_module_name module_name) args;
in fn program => fn (syms, selects) =>
present selects (serializer program false syms)
end;
fun check_code_for ctxt target_name strict args program all_public syms =
let
val { env_var, make_destination, make_command } =
(#check o the_language ctxt) target_name;
fun ext_check p =
let
val destination = make_destination p;
val _ = export (SOME destination) (invoke_serializer ctxt target_name (SOME 80)
generatedN args program all_public syms);
val cmd = make_command generatedN;
in
if Isabelle_System.bash ("cd " ^ File.bash_path p ^ " && " ^ cmd ^ " 2>&1") <> 0
then error ("Code check failed for " ^ target_name ^ ": " ^ cmd)
else ()
end;
in
if not (env_var = "") andalso getenv env_var = ""
then if strict
then error (env_var ^ " not set; cannot check code for " ^ target_name)
else warning (env_var ^ " not set; skipped checking code for " ^ target_name)
else Isabelle_System.with_tmp_dir "Code_Test" ext_check
end;
fun dynamic_compilation_text mounted_serializer prepared_program syms all_public ((vs, ty), t) =
let
val _ = if Code_Thingol.contains_dict_var t then
error "Term to be evaluated contains free dictionaries" else ();
val v' = singleton (Name.variant_list (map fst vs)) "a";
val vs' = (v', []) :: vs;
val ty' = ITyVar v' `-> ty;
val program = prepared_program
|> Code_Symbol.Graph.new_node (Code_Symbol.value,
Code_Thingol.Fun (((vs', ty'), [(([IVar (SOME "dummy")], t), (NONE, true))]), NONE))
|> fold (curry (perhaps o try o
Code_Symbol.Graph.add_edge) Code_Symbol.value) syms;
val (program_code, deresolve) =
produce (mounted_serializer program (if all_public then [] else [Code_Symbol.value]));
val value_name = the (deresolve Code_Symbol.value);
in ((program_code, value_name), deresolve) end;
fun compilation_text' ctxt target_name some_module_name program syms =
let
val (mounted_serializer, (_, prepared_program)) =
mount_serializer ctxt target_name NONE (the_default generatedN some_module_name) [] program syms;
in
Code_Preproc.timed_exec "serializing"
(fn () => dynamic_compilation_text mounted_serializer prepared_program syms) ctxt
end;
fun compilation_text ctxt target_name program syms =
fst oo compilation_text' ctxt target_name NONE program syms
end; (* local *)
(* code generation *)
fun prep_destination "" = NONE
| prep_destination s = SOME (Path.explode s);
fun export_code ctxt all_public cs seris =
let
val program = Code_Thingol.consts_program ctxt cs;
val _ = map (fn (((target_name, module_name), some_path), args) =>
export_code_for ctxt some_path target_name NONE module_name args program all_public (map Constant cs)) seris;
in () end;
fun export_code_cmd all_public raw_cs seris ctxt =
export_code ctxt all_public
(Code_Thingol.read_const_exprs ctxt raw_cs)
((map o apfst o apsnd) prep_destination seris);
fun produce_code ctxt all_public cs target_name some_width some_module_name args =
let
val program = Code_Thingol.consts_program ctxt cs;
in produce_code_for ctxt target_name some_width some_module_name args program all_public (map Constant cs) end;
fun present_code ctxt cs syms target_name some_width some_module_name args =
let
val program = Code_Thingol.consts_program ctxt cs;
in present_code_for ctxt target_name some_width some_module_name args program (map Constant cs, syms) end;
fun check_code ctxt all_public cs seris =
let
val program = Code_Thingol.consts_program ctxt cs;
val _ = map (fn ((target_name, strict), args) =>
check_code_for ctxt target_name strict args program all_public (map Constant cs)) seris;
in () end;
fun check_code_cmd all_public raw_cs seris ctxt =
check_code ctxt all_public
(Code_Thingol.read_const_exprs ctxt raw_cs) seris;
local
val parse_const_terms = Scan.repeat1 Args.term
>> (fn ts => fn ctxt => map (Code.check_const (Proof_Context.theory_of ctxt)) ts);
fun parse_names category parse internalize mark_symbol =
Scan.lift (Args.parens (Args.$$$ category)) |-- Scan.repeat1 parse
>> (fn xs => fn ctxt => map (mark_symbol o internalize ctxt) xs);
val parse_consts = parse_names "consts" Args.term
(Code.check_const o Proof_Context.theory_of) Constant;
val parse_types = parse_names "types" (Scan.lift Args.name)
(Sign.intern_type o Proof_Context.theory_of) Type_Constructor;
val parse_classes = parse_names "classes" (Scan.lift Args.name)
(Sign.intern_class o Proof_Context.theory_of) Type_Class;
val parse_instances = parse_names "instances" (Scan.lift (Args.name --| Args.$$$ "::" -- Args.name))
(fn ctxt => fn (raw_tyco, raw_class) =>
let
val thy = Proof_Context.theory_of ctxt;
in (Sign.intern_class thy raw_tyco, Sign.intern_type thy raw_class) end) Class_Instance;
in
val _ = Theory.setup
(Thy_Output.antiquotation @{binding code_stmts}
(parse_const_terms --
Scan.repeat (parse_consts || parse_types || parse_classes || parse_instances)
-- Scan.lift (Args.parens (Args.name -- Scan.option Parse.int)))
(fn {context = ctxt, ...} => fn ((mk_cs, mk_stmtss), (target_name, some_width)) =>
present_code ctxt (mk_cs ctxt)
(maps (fn f => f ctxt) mk_stmtss)
target_name some_width "Example" []));
end;
(** serializer configuration **)
(* reserved symbol names *)
fun add_reserved target_name sym thy =
let
val (_, (_, data)) = join_ancestry thy target_name;
val _ = if member (op =) (Code_Printer.the_reserved data) sym
then error ("Reserved symbol " ^ quote sym ^ " already declared")
else ();
in
thy
|> map_reserved target_name (insert (op =) sym)
end;
(* checking of syntax *)
fun check_const_syntax ctxt target_name c syn =
if Code_Printer.requires_args syn > Code.args_number (Proof_Context.theory_of ctxt) c
then error ("Too many arguments in syntax for constant " ^ quote c)
else Code_Printer.prep_const_syntax (Proof_Context.theory_of ctxt) (the_literals ctxt target_name) c syn;
fun check_tyco_syntax ctxt target_name tyco syn =
if fst syn <> Sign.arity_number (Proof_Context.theory_of ctxt) tyco
then error ("Number of arguments mismatch in syntax for type constructor " ^ quote tyco)
else syn;
(* custom symbol names *)
fun arrange_name_decls x =
let
fun arrange is_module (sym, target_names) = map (fn (target, some_name) =>
(target, (sym, Option.map (check_name is_module) some_name))) target_names;
in
Code_Symbol.maps_attr' (arrange false) (arrange false) (arrange false)
(arrange false) (arrange false) (arrange true) x
end;
fun cert_name_decls ctxt = cert_syms ctxt #> arrange_name_decls;
fun read_name_decls ctxt = read_syms ctxt #> arrange_name_decls;
fun set_identifier (target_name, sym_name) = map_identifiers target_name (Code_Symbol.set_data sym_name);
fun gen_set_identifiers prep_name_decl raw_name_decls thy =
fold set_identifier (prep_name_decl (Proof_Context.init_global thy) raw_name_decls) thy;
val set_identifiers = gen_set_identifiers cert_name_decls;
val set_identifiers_cmd = gen_set_identifiers read_name_decls;
(* custom printings *)
fun arrange_printings prep_const ctxt =
let
fun arrange check (sym, target_syns) =
map (fn (target_name, some_syn) =>
(target_name, (sym, Option.map (check ctxt target_name sym) some_syn))) target_syns;
in
Code_Symbol.maps_attr'
(arrange check_const_syntax) (arrange check_tyco_syntax)
(arrange ((K o K o K) I)) (arrange ((K o K o K) I)) (arrange ((K o K o K) I))
(arrange (fn ctxt => fn _ => fn _ => fn (raw_content, raw_cs) =>
(Pretty.blk (0, Pretty.fbreaks (map Code_Printer.str (split_lines raw_content))),
map (prep_const ctxt) raw_cs)))
end;
fun cert_printings ctxt = cert_syms ctxt #> arrange_printings cert_const ctxt;
fun read_printings ctxt = read_syms ctxt #> arrange_printings read_const ctxt;
fun set_printing (target_name, sym_syn) = map_printings target_name (Code_Symbol.set_data sym_syn);
fun gen_set_printings prep_print_decl raw_print_decls thy =
fold set_printing (prep_print_decl (Proof_Context.init_global thy) raw_print_decls) thy;
val set_printings = gen_set_printings cert_printings;
val set_printings_cmd = gen_set_printings read_printings;
(* concrete syntax *)
fun parse_args f args =
case Scan.read Token.stopper f args
of SOME x => x
| NONE => error "Bad serializer arguments";
(** Isar setup **)
fun parse_single_symbol_pragma parse_keyword parse_isa parse_target =
parse_keyword |-- Parse.!!! (parse_isa --| (@{keyword "\<rightharpoonup>"} || @{keyword "=>"})
-- Parse.and_list1 (@{keyword "("} |-- (Parse.name --| @{keyword ")"} -- Scan.option parse_target)));
fun parse_symbol_pragma parse_const parse_tyco parse_class parse_classrel parse_inst parse_module =
parse_single_symbol_pragma @{keyword "constant"} Parse.term parse_const
>> Constant
|| parse_single_symbol_pragma @{keyword "type_constructor"} Parse.type_const parse_tyco
>> Type_Constructor
|| parse_single_symbol_pragma @{keyword "type_class"} Parse.class parse_class
>> Type_Class
|| parse_single_symbol_pragma @{keyword "class_relation"} parse_classrel_ident parse_classrel
>> Class_Relation
|| parse_single_symbol_pragma @{keyword "class_instance"} parse_inst_ident parse_inst
>> Class_Instance
|| parse_single_symbol_pragma @{keyword "code_module"} Parse.name parse_module
>> Code_Symbol.Module;
fun parse_symbol_pragmas parse_const parse_tyco parse_class parse_classrel parse_inst parse_module =
Parse.enum1 "|" (Parse.group (fn () => "code symbol pragma")
(parse_symbol_pragma parse_const parse_tyco parse_class parse_classrel parse_inst parse_module));
val code_expr_argsP = Scan.optional (@{keyword "("} |-- Parse.args --| @{keyword ")"}) [];
fun code_expr_inP all_public raw_cs =
Scan.repeat (@{keyword "in"} |-- Parse.!!! (Parse.name
-- Scan.optional (@{keyword "module_name"} |-- Parse.name) ""
-- Scan.optional (@{keyword "file"} |-- Parse.name) ""
-- code_expr_argsP))
>> (fn seri_args => export_code_cmd all_public raw_cs seri_args);
fun code_expr_checkingP all_public raw_cs =
(@{keyword "checking"} |-- Parse.!!!
(Scan.repeat (Parse.name -- ((@{keyword "?"} |-- Scan.succeed false) || Scan.succeed true)
-- code_expr_argsP)))
>> (fn seri_args => check_code_cmd all_public raw_cs seri_args);
val code_exprP = (Scan.optional (@{keyword "open"} |-- Scan.succeed true) false
-- Scan.repeat1 Parse.term)
:|-- (fn (all_public, raw_cs) => (code_expr_checkingP all_public raw_cs || code_expr_inP all_public raw_cs));
val _ =
Outer_Syntax.command @{command_keyword code_reserved}
"declare words as reserved for target language"
(Parse.name -- Scan.repeat1 Parse.name
>> (fn (target, reserveds) => (Toplevel.theory o fold (add_reserved target)) reserveds));
val _ =
Outer_Syntax.command @{command_keyword code_identifier} "declare mandatory names for code symbols"
(parse_symbol_pragmas Parse.name Parse.name Parse.name Parse.name Parse.name Parse.name
>> (Toplevel.theory o fold set_identifiers_cmd));
val _ =
Outer_Syntax.command @{command_keyword code_printing} "declare dedicated printing for code symbols"
(parse_symbol_pragmas (Code_Printer.parse_const_syntax) (Code_Printer.parse_tyco_syntax)
Parse.string (Parse.minus >> K ()) (Parse.minus >> K ())
(Parse.text -- Scan.optional (@{keyword "attach"} |-- Scan.repeat1 Parse.term) [])
>> (Toplevel.theory o fold set_printings_cmd));
val _ =
Outer_Syntax.command @{command_keyword export_code} "generate executable code for constants"
(Parse.!!! code_exprP >> (fn f => Toplevel.keep (f o Toplevel.context_of)));
end; (*struct*)