src/HOL/Induct/README.html
author wenzelm
Tue, 03 Mar 2009 14:07:43 +0100
changeset 30211 556d1810cdad
parent 15582 7219facb3fd0
child 33688 1a97dcd8dc6a
permissions -rw-r--r--
Thm.binding;

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<!-- $Id$ -->

<HTML>

<HEAD>
  <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
  <TITLE>HOL/Induct/README</TITLE>
</HEAD>

<BODY>

<H2>Induct--Examples of (Co)Inductive Definitions</H2>

<P>This directory is a collection of small examples to demonstrate
Isabelle/HOL's (co)inductive definitions package.  Large examples appear on
many other directories, such as Auth, IMP and Lambda.

<UL>

<LI><KBD>Comb</KBD> proves the Church-Rosser theorem for combinators (<A
HREF="http://www.cl.cam.ac.uk/ftp/papers/reports/TR396-lcp-generic-automatic-proof-tools.ps.gz">paper
available</A>).

<LI><KBD>Mutil</KBD> is the famous Mutilated Chess Board problem (<A
HREF="http://www.cl.cam.ac.uk/ftp/papers/reports/TR394-lcp-mutilated-chess-board.dvi.gz">paper
available</A>).

<LI><KBD>PropLog</KBD> proves the completeness of a formalization of
propositional logic (<A
HREF="http://www.cl.cam.ac.uk/Research/Reports/TR312-lcp-set-II.ps.gz">paper
available</A>).

<LI><KBD>LFilter</KBD> is an inductive/corecursive formalization of the
<EM>filter</EM> functional for infinite streams.

<LI><KBD>Exp</KBD> demonstrates the use of iterated inductive definitions to
reason about mutually recursive relations.
</UL>

<HR>

<ADDRESS>
<A NAME="lcp@cl.cam.ac.uk" HREF="mailto:lcp@cl.cam.ac.uk">lcp@cl.cam.ac.uk</A>
</ADDRESS>
</BODY></HTML>