(* Title: HOL/Quotient.thy
Author: Cezary Kaliszyk and Christian Urban
*)
section \<open>Definition of Quotient Types\<close>
theory Quotient
imports Lifting
keywords
"print_quotmapsQ3" "print_quotientsQ3" "print_quotconsts" :: diag and
"quotient_type" :: thy_goal_defn and "/" and
"quotient_definition" :: thy_goal_defn and
"copy_bnf" :: thy_defn and
"lift_bnf" :: thy_goal_defn
begin
text \<open>
Basic definition for equivalence relations
that are represented by predicates.
\<close>
text \<open>Composition of Relations\<close>
abbreviation
rel_conj :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" (infixr "OOO" 75)
where
"r1 OOO r2 \<equiv> r1 OO r2 OO r1"
lemma eq_comp_r:
shows "((=) OOO R) = R"
by (auto simp add: fun_eq_iff)
context includes lifting_syntax
begin
subsection \<open>Quotient Predicate\<close>
definition
"Quotient3 R Abs Rep \<longleftrightarrow>
(\<forall>a. Abs (Rep a) = a) \<and> (\<forall>a. R (Rep a) (Rep a)) \<and>
(\<forall>r s. R r s \<longleftrightarrow> R r r \<and> R s s \<and> Abs r = Abs s)"
lemma Quotient3I:
assumes "\<And>a. Abs (Rep a) = a"
and "\<And>a. R (Rep a) (Rep a)"
and "\<And>r s. R r s \<longleftrightarrow> R r r \<and> R s s \<and> Abs r = Abs s"
shows "Quotient3 R Abs Rep"
using assms unfolding Quotient3_def by blast
context
fixes R Abs Rep
assumes a: "Quotient3 R Abs Rep"
begin
lemma Quotient3_abs_rep:
"Abs (Rep a) = a"
using a
unfolding Quotient3_def
by simp
lemma Quotient3_rep_reflp:
"R (Rep a) (Rep a)"
using a
unfolding Quotient3_def
by blast
lemma Quotient3_rel:
"R r r \<and> R s s \<and> Abs r = Abs s \<longleftrightarrow> R r s" \<comment> \<open>orientation does not loop on rewriting\<close>
using a
unfolding Quotient3_def
by blast
lemma Quotient3_refl1:
"R r s \<Longrightarrow> R r r"
using a unfolding Quotient3_def
by fast
lemma Quotient3_refl2:
"R r s \<Longrightarrow> R s s"
using a unfolding Quotient3_def
by fast
lemma Quotient3_rel_rep:
"R (Rep a) (Rep b) \<longleftrightarrow> a = b"
using a
unfolding Quotient3_def
by metis
lemma Quotient3_rep_abs:
"R r r \<Longrightarrow> R (Rep (Abs r)) r"
using a unfolding Quotient3_def
by blast
lemma Quotient3_rel_abs:
"R r s \<Longrightarrow> Abs r = Abs s"
using a unfolding Quotient3_def
by blast
lemma Quotient3_symp:
"symp R"
using a unfolding Quotient3_def using sympI by metis
lemma Quotient3_transp:
"transp R"
using a unfolding Quotient3_def using transpI by (metis (full_types))
lemma Quotient3_part_equivp:
"part_equivp R"
by (metis Quotient3_rep_reflp Quotient3_symp Quotient3_transp part_equivpI)
lemma abs_o_rep:
"Abs \<circ> Rep = id"
unfolding fun_eq_iff
by (simp add: Quotient3_abs_rep)
lemma equals_rsp:
assumes b: "R xa xb" "R ya yb"
shows "R xa ya = R xb yb"
using b Quotient3_symp Quotient3_transp
by (blast elim: sympE transpE)
lemma rep_abs_rsp:
assumes b: "R x1 x2"
shows "R x1 (Rep (Abs x2))"
using b Quotient3_rel Quotient3_abs_rep Quotient3_rep_reflp
by metis
lemma rep_abs_rsp_left:
assumes b: "R x1 x2"
shows "R (Rep (Abs x1)) x2"
using b Quotient3_rel Quotient3_abs_rep Quotient3_rep_reflp
by metis
end
lemma identity_quotient3:
"Quotient3 (=) id id"
unfolding Quotient3_def id_def
by blast
lemma fun_quotient3:
assumes q1: "Quotient3 R1 abs1 rep1"
and q2: "Quotient3 R2 abs2 rep2"
shows "Quotient3 (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
proof -
have "(rep1 ---> abs2) ((abs1 ---> rep2) a) = a" for a
using q1 q2 by (simp add: Quotient3_def fun_eq_iff)
moreover
have "(R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)" for a
by (rule rel_funI)
(insert q1 q2 Quotient3_rel_abs [of R1 abs1 rep1] Quotient3_rel_rep [of R2 abs2 rep2],
simp (no_asm) add: Quotient3_def, simp)
moreover
have "(R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and>
(rep1 ---> abs2) r = (rep1 ---> abs2) s)" for r s
proof -
have "(R1 ===> R2) r s \<Longrightarrow> (R1 ===> R2) r r" unfolding rel_fun_def
using Quotient3_part_equivp[OF q1] Quotient3_part_equivp[OF q2]
by (metis (full_types) part_equivp_def)
moreover have "(R1 ===> R2) r s \<Longrightarrow> (R1 ===> R2) s s" unfolding rel_fun_def
using Quotient3_part_equivp[OF q1] Quotient3_part_equivp[OF q2]
by (metis (full_types) part_equivp_def)
moreover have "(R1 ===> R2) r s \<Longrightarrow> (rep1 ---> abs2) r = (rep1 ---> abs2) s"
by (auto simp add: rel_fun_def fun_eq_iff)
(use q1 q2 in \<open>unfold Quotient3_def, metis\<close>)
moreover have "((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and>
(rep1 ---> abs2) r = (rep1 ---> abs2) s) \<Longrightarrow> (R1 ===> R2) r s"
by (auto simp add: rel_fun_def fun_eq_iff)
(use q1 q2 in \<open>unfold Quotient3_def, metis map_fun_apply\<close>)
ultimately show ?thesis by blast
qed
ultimately show ?thesis by (intro Quotient3I) (assumption+)
qed
lemma lambda_prs:
assumes q1: "Quotient3 R1 Abs1 Rep1"
and q2: "Quotient3 R2 Abs2 Rep2"
shows "(Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) = (\<lambda>x. f x)"
unfolding fun_eq_iff
using Quotient3_abs_rep[OF q1] Quotient3_abs_rep[OF q2]
by simp
lemma lambda_prs1:
assumes q1: "Quotient3 R1 Abs1 Rep1"
and q2: "Quotient3 R2 Abs2 Rep2"
shows "(Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x) = (\<lambda>x. f x)"
unfolding fun_eq_iff
using Quotient3_abs_rep[OF q1] Quotient3_abs_rep[OF q2]
by simp
text\<open>
In the following theorem R1 can be instantiated with anything,
but we know some of the types of the Rep and Abs functions;
so by solving Quotient assumptions we can get a unique R1 that
will be provable; which is why we need to use \<open>apply_rsp\<close> and
not the primed version\<close>
lemma apply_rspQ3:
fixes f g::"'a \<Rightarrow> 'c"
assumes q: "Quotient3 R1 Abs1 Rep1"
and a: "(R1 ===> R2) f g" "R1 x y"
shows "R2 (f x) (g y)"
using a by (auto elim: rel_funE)
lemma apply_rspQ3'':
assumes "Quotient3 R Abs Rep"
and "(R ===> S) f f"
shows "S (f (Rep x)) (f (Rep x))"
proof -
from assms(1) have "R (Rep x) (Rep x)" by (rule Quotient3_rep_reflp)
then show ?thesis using assms(2) by (auto intro: apply_rsp')
qed
subsection \<open>lemmas for regularisation of ball and bex\<close>
lemma ball_reg_eqv:
fixes P :: "'a \<Rightarrow> bool"
assumes a: "equivp R"
shows "Ball (Respects R) P = (All P)"
using a
unfolding equivp_def
by (auto simp add: in_respects)
lemma bex_reg_eqv:
fixes P :: "'a \<Rightarrow> bool"
assumes a: "equivp R"
shows "Bex (Respects R) P = (Ex P)"
using a
unfolding equivp_def
by (auto simp add: in_respects)
lemma ball_reg_right:
assumes a: "\<And>x. x \<in> R \<Longrightarrow> P x \<longrightarrow> Q x"
shows "All P \<longrightarrow> Ball R Q"
using a by fast
lemma bex_reg_left:
assumes a: "\<And>x. x \<in> R \<Longrightarrow> Q x \<longrightarrow> P x"
shows "Bex R Q \<longrightarrow> Ex P"
using a by fast
lemma ball_reg_left:
assumes a: "equivp R"
shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ball (Respects R) Q \<longrightarrow> All P"
using a by (metis equivp_reflp in_respects)
lemma bex_reg_right:
assumes a: "equivp R"
shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ex Q \<longrightarrow> Bex (Respects R) P"
using a by (metis equivp_reflp in_respects)
lemma ball_reg_eqv_range:
fixes P::"'a \<Rightarrow> bool"
and x::"'a"
assumes a: "equivp R2"
shows "(Ball (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = All (\<lambda>f. P (f x)))"
proof (intro allI iffI)
fix f
assume "\<forall>f \<in> Respects (R1 ===> R2). P (f x)"
moreover have "(\<lambda>y. f x) \<in> Respects (R1 ===> R2)"
using a equivp_reflp_symp_transp[of "R2"]
by(auto simp add: in_respects rel_fun_def elim: equivpE reflpE)
ultimately show "P (f x)"
by auto
qed auto
lemma bex_reg_eqv_range:
assumes a: "equivp R2"
shows "(Bex (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = Ex (\<lambda>f. P (f x)))"
proof -
{ fix f
assume "P (f x)"
have "(\<lambda>y. f x) \<in> Respects (R1 ===> R2)"
using a equivp_reflp_symp_transp[of "R2"]
by (auto simp add: Respects_def in_respects rel_fun_def elim: equivpE reflpE) }
then show ?thesis
by auto
qed
(* Next four lemmas are unused *)
lemma all_reg:
assumes a: "\<forall>x :: 'a. (P x \<longrightarrow> Q x)"
and b: "All P"
shows "All Q"
using a b by fast
lemma ex_reg:
assumes a: "\<forall>x :: 'a. (P x \<longrightarrow> Q x)"
and b: "Ex P"
shows "Ex Q"
using a b by fast
lemma ball_reg:
assumes a: "\<forall>x :: 'a. (x \<in> R \<longrightarrow> P x \<longrightarrow> Q x)"
and b: "Ball R P"
shows "Ball R Q"
using a b by fast
lemma bex_reg:
assumes a: "\<forall>x :: 'a. (x \<in> R \<longrightarrow> P x \<longrightarrow> Q x)"
and b: "Bex R P"
shows "Bex R Q"
using a b by fast
lemma ball_all_comm:
assumes "\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)"
shows "(\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y)"
using assms by auto
lemma bex_ex_comm:
assumes "(\<exists>y. \<exists>x. A x y) \<longrightarrow> (\<exists>y. \<exists>x\<in>P. B x y)"
shows "(\<exists>x. \<exists>y. A x y) \<longrightarrow> (\<exists>x\<in>P. \<exists>y. B x y)"
using assms by auto
subsection \<open>Bounded abstraction\<close>
definition
Babs :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
where
"x \<in> p \<Longrightarrow> Babs p m x = m x"
lemma babs_rsp:
assumes q: "Quotient3 R1 Abs1 Rep1"
and a: "(R1 ===> R2) f g"
shows "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)"
proof (clarsimp simp add: Babs_def in_respects rel_fun_def)
fix x y
assume "R1 x y"
then have "x \<in> Respects R1 \<and> y \<in> Respects R1"
unfolding in_respects rel_fun_def using Quotient3_rel[OF q]by metis
then show "R2 (Babs (Respects R1) f x) (Babs (Respects R1) g y)"
using \<open>R1 x y\<close> a by (simp add: Babs_def rel_fun_def)
qed
lemma babs_prs:
assumes q1: "Quotient3 R1 Abs1 Rep1"
and q2: "Quotient3 R2 Abs2 Rep2"
shows "((Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f))) = f"
proof -
{ fix x
have "Rep1 x \<in> Respects R1"
by (simp add: in_respects Quotient3_rel_rep[OF q1])
then have "Abs2 (Babs (Respects R1) ((Abs1 ---> Rep2) f) (Rep1 x)) = f x"
by (simp add: Babs_def Quotient3_abs_rep[OF q1] Quotient3_abs_rep[OF q2])
}
then show ?thesis
by force
qed
lemma babs_simp:
assumes q: "Quotient3 R1 Abs Rep"
shows "((R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)) = ((R1 ===> R2) f g)"
(is "?lhs = ?rhs")
proof
assume ?lhs
then show ?rhs
unfolding rel_fun_def by (metis Babs_def in_respects Quotient3_rel[OF q])
qed (simp add: babs_rsp[OF q])
text \<open>If a user proves that a particular functional relation
is an equivalence, this may be useful in regularising\<close>
lemma babs_reg_eqv:
shows "equivp R \<Longrightarrow> Babs (Respects R) P = P"
by (simp add: fun_eq_iff Babs_def in_respects equivp_reflp)
(* 3 lemmas needed for proving repabs_inj *)
lemma ball_rsp:
assumes a: "(R ===> (=)) f g"
shows "Ball (Respects R) f = Ball (Respects R) g"
using a by (auto simp add: Ball_def in_respects elim: rel_funE)
lemma bex_rsp:
assumes a: "(R ===> (=)) f g"
shows "(Bex (Respects R) f = Bex (Respects R) g)"
using a by (auto simp add: Bex_def in_respects elim: rel_funE)
lemma bex1_rsp:
assumes a: "(R ===> (=)) f g"
shows "Ex1 (\<lambda>x. x \<in> Respects R \<and> f x) = Ex1 (\<lambda>x. x \<in> Respects R \<and> g x)"
using a by (auto elim: rel_funE simp add: Ex1_def in_respects)
text \<open>Two lemmas needed for cleaning of quantifiers\<close>
lemma all_prs:
assumes a: "Quotient3 R absf repf"
shows "Ball (Respects R) ((absf ---> id) f) = All f"
using a unfolding Quotient3_def Ball_def in_respects id_apply comp_def map_fun_def
by metis
lemma ex_prs:
assumes a: "Quotient3 R absf repf"
shows "Bex (Respects R) ((absf ---> id) f) = Ex f"
using a unfolding Quotient3_def Bex_def in_respects id_apply comp_def map_fun_def
by metis
subsection \<open>\<open>Bex1_rel\<close> quantifier\<close>
definition
Bex1_rel :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
where
"Bex1_rel R P \<longleftrightarrow> (\<exists>x \<in> Respects R. P x) \<and> (\<forall>x \<in> Respects R. \<forall>y \<in> Respects R. ((P x \<and> P y) \<longrightarrow> (R x y)))"
lemma bex1_rel_aux:
"\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R x\<rbrakk> \<Longrightarrow> Bex1_rel R y"
unfolding Bex1_rel_def
by (metis in_respects)
lemma bex1_rel_aux2:
"\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R y\<rbrakk> \<Longrightarrow> Bex1_rel R x"
unfolding Bex1_rel_def
by (metis in_respects)
lemma bex1_rel_rsp:
assumes a: "Quotient3 R absf repf"
shows "((R ===> (=)) ===> (=)) (Bex1_rel R) (Bex1_rel R)"
unfolding rel_fun_def by (metis bex1_rel_aux bex1_rel_aux2)
lemma ex1_prs:
assumes "Quotient3 R absf repf"
shows "((absf ---> id) ---> id) (Bex1_rel R) f = Ex1 f"
(is "?lhs = ?rhs")
using assms
apply (auto simp add: Bex1_rel_def Respects_def)
by (metis (full_types) Quotient3_def)+
lemma bex1_bexeq_reg:
shows "(\<exists>!x\<in>Respects R. P x) \<longrightarrow> (Bex1_rel R (\<lambda>x. P x))"
by (auto simp add: Ex1_def Bex1_rel_def Bex_def Ball_def in_respects)
lemma bex1_bexeq_reg_eqv:
assumes a: "equivp R"
shows "(\<exists>!x. P x) \<longrightarrow> Bex1_rel R P"
using equivp_reflp[OF a]
by (metis (full_types) Bex1_rel_def in_respects)
subsection \<open>Various respects and preserve lemmas\<close>
lemma quot_rel_rsp:
assumes a: "Quotient3 R Abs Rep"
shows "(R ===> R ===> (=)) R R"
apply(rule rel_funI)+
by (meson assms equals_rsp)
lemma o_prs:
assumes q1: "Quotient3 R1 Abs1 Rep1"
and q2: "Quotient3 R2 Abs2 Rep2"
and q3: "Quotient3 R3 Abs3 Rep3"
shows "((Abs2 ---> Rep3) ---> (Abs1 ---> Rep2) ---> (Rep1 ---> Abs3)) (\<circ>) = (\<circ>)"
and "(id ---> (Abs1 ---> id) ---> Rep1 ---> id) (\<circ>) = (\<circ>)"
using Quotient3_abs_rep[OF q1] Quotient3_abs_rep[OF q2] Quotient3_abs_rep[OF q3]
by (simp_all add: fun_eq_iff)
lemma o_rsp:
"((R2 ===> R3) ===> (R1 ===> R2) ===> (R1 ===> R3)) (\<circ>) (\<circ>)"
"((=) ===> (R1 ===> (=)) ===> R1 ===> (=)) (\<circ>) (\<circ>)"
by (force elim: rel_funE)+
lemma cond_prs:
assumes a: "Quotient3 R absf repf"
shows "absf (if a then repf b else repf c) = (if a then b else c)"
using a unfolding Quotient3_def by auto
lemma if_prs:
assumes q: "Quotient3 R Abs Rep"
shows "(id ---> Rep ---> Rep ---> Abs) If = If"
using Quotient3_abs_rep[OF q]
by (auto simp add: fun_eq_iff)
lemma if_rsp:
assumes q: "Quotient3 R Abs Rep"
shows "((=) ===> R ===> R ===> R) If If"
by force
lemma let_prs:
assumes q1: "Quotient3 R1 Abs1 Rep1"
and q2: "Quotient3 R2 Abs2 Rep2"
shows "(Rep2 ---> (Abs2 ---> Rep1) ---> Abs1) Let = Let"
using Quotient3_abs_rep[OF q1] Quotient3_abs_rep[OF q2]
by (auto simp add: fun_eq_iff)
lemma let_rsp:
shows "(R1 ===> (R1 ===> R2) ===> R2) Let Let"
by (force elim: rel_funE)
lemma id_rsp:
shows "(R ===> R) id id"
by auto
lemma id_prs:
assumes a: "Quotient3 R Abs Rep"
shows "(Rep ---> Abs) id = id"
by (simp add: fun_eq_iff Quotient3_abs_rep [OF a])
end
locale quot_type =
fixes R :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
and Abs :: "'a set \<Rightarrow> 'b"
and Rep :: "'b \<Rightarrow> 'a set"
assumes equivp: "part_equivp R"
and rep_prop: "\<And>y. \<exists>x. R x x \<and> Rep y = Collect (R x)"
and rep_inverse: "\<And>x. Abs (Rep x) = x"
and abs_inverse: "\<And>c. (\<exists>x. ((R x x) \<and> (c = Collect (R x)))) \<Longrightarrow> (Rep (Abs c)) = c"
and rep_inject: "\<And>x y. (Rep x = Rep y) = (x = y)"
begin
definition
abs :: "'a \<Rightarrow> 'b"
where
"abs x = Abs (Collect (R x))"
definition
rep :: "'b \<Rightarrow> 'a"
where
"rep a = (SOME x. x \<in> Rep a)"
lemma some_collect:
assumes "R r r"
shows "R (SOME x. x \<in> Collect (R r)) = R r"
apply simp
by (metis assms exE_some equivp[simplified part_equivp_def])
lemma Quotient:
shows "Quotient3 R abs rep"
unfolding Quotient3_def abs_def rep_def
proof (intro conjI allI)
fix a r s
show x: "R (SOME x. x \<in> Rep a) (SOME x. x \<in> Rep a)" proof -
obtain x where r: "R x x" and rep: "Rep a = Collect (R x)" using rep_prop[of a] by auto
have "R (SOME x. x \<in> Rep a) x" using r rep some_collect by metis
then have "R x (SOME x. x \<in> Rep a)" using part_equivp_symp[OF equivp] by fast
then show "R (SOME x. x \<in> Rep a) (SOME x. x \<in> Rep a)"
using part_equivp_transp[OF equivp] by (metis \<open>R (SOME x. x \<in> Rep a) x\<close>)
qed
have "Collect (R (SOME x. x \<in> Rep a)) = (Rep a)" by (metis some_collect rep_prop)
then show "Abs (Collect (R (SOME x. x \<in> Rep a))) = a" using rep_inverse by auto
have "R r r \<Longrightarrow> R s s \<Longrightarrow> Abs (Collect (R r)) = Abs (Collect (R s)) \<longleftrightarrow> R r = R s"
proof -
assume "R r r" and "R s s"
then have "Abs (Collect (R r)) = Abs (Collect (R s)) \<longleftrightarrow> Collect (R r) = Collect (R s)"
by (metis abs_inverse)
also have "Collect (R r) = Collect (R s) \<longleftrightarrow> (\<lambda>A x. x \<in> A) (Collect (R r)) = (\<lambda>A x. x \<in> A) (Collect (R s))"
by rule simp_all
finally show "Abs (Collect (R r)) = Abs (Collect (R s)) \<longleftrightarrow> R r = R s" by simp
qed
then show "R r s \<longleftrightarrow> R r r \<and> R s s \<and> (Abs (Collect (R r)) = Abs (Collect (R s)))"
using equivp[simplified part_equivp_def] by metis
qed
end
subsection \<open>Quotient composition\<close>
lemma OOO_quotient3:
fixes R1 :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
fixes Abs1 :: "'a \<Rightarrow> 'b" and Rep1 :: "'b \<Rightarrow> 'a"
fixes Abs2 :: "'b \<Rightarrow> 'c" and Rep2 :: "'c \<Rightarrow> 'b"
fixes R2' :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
fixes R2 :: "'b \<Rightarrow> 'b \<Rightarrow> bool"
assumes R1: "Quotient3 R1 Abs1 Rep1"
assumes R2: "Quotient3 R2 Abs2 Rep2"
assumes Abs1: "\<And>x y. R2' x y \<Longrightarrow> R1 x x \<Longrightarrow> R1 y y \<Longrightarrow> R2 (Abs1 x) (Abs1 y)"
assumes Rep1: "\<And>x y. R2 x y \<Longrightarrow> R2' (Rep1 x) (Rep1 y)"
shows "Quotient3 (R1 OO R2' OO R1) (Abs2 \<circ> Abs1) (Rep1 \<circ> Rep2)"
proof -
have *: "(R1 OOO R2') r r \<and> (R1 OOO R2') s s \<and> (Abs2 \<circ> Abs1) r = (Abs2 \<circ> Abs1) s
\<longleftrightarrow> (R1 OOO R2') r s" for r s
proof (intro iffI conjI; clarify)
show "(R1 OOO R2') r s"
if r: "R1 r a" "R2' a b" "R1 b r" and eq: "(Abs2 \<circ> Abs1) r = (Abs2 \<circ> Abs1) s"
and s: "R1 s c" "R2' c d" "R1 d s" for a b c d
proof -
have "R1 r (Rep1 (Abs1 r))"
using r Quotient3_refl1 R1 rep_abs_rsp by fastforce
moreover have "R2' (Rep1 (Abs1 r)) (Rep1 (Abs1 s))"
using that
apply (simp add: )
apply (metis (full_types) Rep1 Abs1 Quotient3_rel R2 Quotient3_refl1 [OF R1] Quotient3_refl2 [OF R1] Quotient3_rel_abs [OF R1])
done
moreover have "R1 (Rep1 (Abs1 s)) s"
by (metis s Quotient3_rel R1 rep_abs_rsp_left)
ultimately show ?thesis
by (metis relcomppI)
qed
next
fix x y
assume xy: "R1 r x" "R2' x y" "R1 y s"
then have "R2 (Abs1 x) (Abs1 y)"
by (iprover dest: Abs1 elim: Quotient3_refl1 [OF R1] Quotient3_refl2 [OF R1])
then have "R2' (Rep1 (Abs1 x)) (Rep1 (Abs1 x))" "R2' (Rep1 (Abs1 y)) (Rep1 (Abs1 y))"
by (simp_all add: Quotient3_refl1 [OF R2] Quotient3_refl2 [OF R2] Rep1)
with \<open>R1 r x\<close> \<open>R1 y s\<close> show "(R1 OOO R2') r r" "(R1 OOO R2') s s"
by (metis (full_types) Quotient3_def R1 relcompp.relcompI)+
show "(Abs2 \<circ> Abs1) r = (Abs2 \<circ> Abs1) s"
using xy by simp (metis (full_types) Abs1 Quotient3_rel R1 R2)
qed
show ?thesis
apply (rule Quotient3I)
using * apply (simp_all add: o_def Quotient3_abs_rep [OF R2] Quotient3_abs_rep [OF R1])
apply (metis Quotient3_rep_reflp R1 R2 Rep1 relcompp.relcompI)
done
qed
lemma OOO_eq_quotient3:
fixes R1 :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
fixes Abs1 :: "'a \<Rightarrow> 'b" and Rep1 :: "'b \<Rightarrow> 'a"
fixes Abs2 :: "'b \<Rightarrow> 'c" and Rep2 :: "'c \<Rightarrow> 'b"
assumes R1: "Quotient3 R1 Abs1 Rep1"
assumes R2: "Quotient3 (=) Abs2 Rep2"
shows "Quotient3 (R1 OOO (=)) (Abs2 \<circ> Abs1) (Rep1 \<circ> Rep2)"
using assms
by (rule OOO_quotient3) auto
subsection \<open>Quotient3 to Quotient\<close>
lemma Quotient3_to_Quotient:
assumes "Quotient3 R Abs Rep"
and "T \<equiv> \<lambda>x y. R x x \<and> Abs x = y"
shows "Quotient R Abs Rep T"
using assms unfolding Quotient3_def by (intro QuotientI) blast+
lemma Quotient3_to_Quotient_equivp:
assumes q: "Quotient3 R Abs Rep"
and T_def: "T \<equiv> \<lambda>x y. Abs x = y"
and eR: "equivp R"
shows "Quotient R Abs Rep T"
proof (intro QuotientI)
fix a
show "Abs (Rep a) = a" using q by(rule Quotient3_abs_rep)
next
fix a
show "R (Rep a) (Rep a)" using q by(rule Quotient3_rep_reflp)
next
fix r s
show "R r s = (R r r \<and> R s s \<and> Abs r = Abs s)" using q by(rule Quotient3_rel[symmetric])
next
show "T = (\<lambda>x y. R x x \<and> Abs x = y)" using T_def equivp_reflp[OF eR] by simp
qed
subsection \<open>ML setup\<close>
text \<open>Auxiliary data for the quotient package\<close>
named_theorems quot_equiv "equivalence relation theorems"
and quot_respect "respectfulness theorems"
and quot_preserve "preservation theorems"
and id_simps "identity simp rules for maps"
and quot_thm "quotient theorems"
ML_file \<open>Tools/Quotient/quotient_info.ML\<close>
declare [[mapQ3 "fun" = (rel_fun, fun_quotient3)]]
lemmas [quot_thm] = fun_quotient3
lemmas [quot_respect] = quot_rel_rsp if_rsp o_rsp let_rsp id_rsp
lemmas [quot_preserve] = if_prs o_prs let_prs id_prs
lemmas [quot_equiv] = identity_equivp
text \<open>Lemmas about simplifying id's.\<close>
lemmas [id_simps] =
id_def[symmetric]
map_fun_id
id_apply
id_o
o_id
eq_comp_r
vimage_id
text \<open>Translation functions for the lifting process.\<close>
ML_file \<open>Tools/Quotient/quotient_term.ML\<close>
text \<open>Definitions of the quotient types.\<close>
ML_file \<open>Tools/Quotient/quotient_type.ML\<close>
text \<open>Definitions for quotient constants.\<close>
ML_file \<open>Tools/Quotient/quotient_def.ML\<close>
text \<open>
An auxiliary constant for recording some information
about the lifted theorem in a tactic.
\<close>
definition
Quot_True :: "'a \<Rightarrow> bool"
where
"Quot_True x \<longleftrightarrow> True"
lemma
shows QT_all: "Quot_True (All P) \<Longrightarrow> Quot_True P"
and QT_ex: "Quot_True (Ex P) \<Longrightarrow> Quot_True P"
and QT_ex1: "Quot_True (Ex1 P) \<Longrightarrow> Quot_True P"
and QT_lam: "Quot_True (\<lambda>x. P x) \<Longrightarrow> (\<And>x. Quot_True (P x))"
and QT_ext: "(\<And>x. Quot_True (a x) \<Longrightarrow> f x = g x) \<Longrightarrow> (Quot_True a \<Longrightarrow> f = g)"
by (simp_all add: Quot_True_def ext)
lemma QT_imp: "Quot_True a \<equiv> Quot_True b"
by (simp add: Quot_True_def)
context includes lifting_syntax
begin
text \<open>Tactics for proving the lifted theorems\<close>
ML_file \<open>Tools/Quotient/quotient_tacs.ML\<close>
end
subsection \<open>Methods / Interface\<close>
method_setup lifting =
\<open>Attrib.thms >> (fn thms => fn ctxt =>
SIMPLE_METHOD' (Quotient_Tacs.lift_tac ctxt [] thms))\<close>
\<open>lift theorems to quotient types\<close>
method_setup lifting_setup =
\<open>Attrib.thm >> (fn thm => fn ctxt =>
SIMPLE_METHOD' (Quotient_Tacs.lift_procedure_tac ctxt [] thm))\<close>
\<open>set up the three goals for the quotient lifting procedure\<close>
method_setup descending =
\<open>Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.descend_tac ctxt []))\<close>
\<open>decend theorems to the raw level\<close>
method_setup descending_setup =
\<open>Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.descend_procedure_tac ctxt []))\<close>
\<open>set up the three goals for the decending theorems\<close>
method_setup partiality_descending =
\<open>Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.partiality_descend_tac ctxt []))\<close>
\<open>decend theorems to the raw level\<close>
method_setup partiality_descending_setup =
\<open>Scan.succeed (fn ctxt =>
SIMPLE_METHOD' (Quotient_Tacs.partiality_descend_procedure_tac ctxt []))\<close>
\<open>set up the three goals for the decending theorems\<close>
method_setup regularize =
\<open>Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.regularize_tac ctxt))\<close>
\<open>prove the regularization goals from the quotient lifting procedure\<close>
method_setup injection =
\<open>Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.all_injection_tac ctxt))\<close>
\<open>prove the rep/abs injection goals from the quotient lifting procedure\<close>
method_setup cleaning =
\<open>Scan.succeed (fn ctxt => SIMPLE_METHOD' (Quotient_Tacs.clean_tac ctxt))\<close>
\<open>prove the cleaning goals from the quotient lifting procedure\<close>
attribute_setup quot_lifted =
\<open>Scan.succeed Quotient_Tacs.lifted_attrib\<close>
\<open>lift theorems to quotient types\<close>
no_notation
rel_conj (infixr "OOO" 75)
section \<open>Lifting of BNFs\<close>
lemma sum_insert_Inl_unit: "x \<in> A \<Longrightarrow> (\<And>y. x = Inr y \<Longrightarrow> Inr y \<in> B) \<Longrightarrow> x \<in> insert (Inl ()) B"
by (cases x) (simp_all)
lemma lift_sum_unit_vimage_commute:
"insert (Inl ()) (Inr ` f -` A) = map_sum id f -` insert (Inl ()) (Inr ` A)"
by (auto simp: map_sum_def split: sum.splits)
lemma insert_Inl_int_map_sum_unit: "insert (Inl ()) A \<inter> range (map_sum id f) \<noteq> {}"
by (auto simp: map_sum_def split: sum.splits)
lemma image_map_sum_unit_subset:
"A \<subseteq> insert (Inl ()) (Inr ` B) \<Longrightarrow> map_sum id f ` A \<subseteq> insert (Inl ()) (Inr ` f ` B)"
by auto
lemma subset_lift_sum_unitD: "A \<subseteq> insert (Inl ()) (Inr ` B) \<Longrightarrow> Inr x \<in> A \<Longrightarrow> x \<in> B"
unfolding insert_def by auto
lemma UNIV_sum_unit_conv: "insert (Inl ()) (range Inr) = UNIV"
unfolding UNIV_sum UNIV_unit image_insert image_empty Un_insert_left sup_bot.left_neutral..
lemma subset_vimage_image_subset: "A \<subseteq> f -` B \<Longrightarrow> f ` A \<subseteq> B"
by auto
lemma relcompp_mem_Grp_neq_bot:
"A \<inter> range f \<noteq> {} \<Longrightarrow> (\<lambda>x y. x \<in> A \<and> y \<in> A) OO (Grp UNIV f)\<inverse>\<inverse> \<noteq> bot"
unfolding Grp_def relcompp_apply fun_eq_iff by blast
lemma comp_projr_Inr: "projr \<circ> Inr = id"
by auto
lemma in_rel_sum_in_image_projr:
"B \<subseteq> {(x,y). rel_sum ((=) :: unit \<Rightarrow> unit \<Rightarrow> bool) A x y} \<Longrightarrow>
Inr ` C = fst ` B \<Longrightarrow> snd ` B = Inr ` D \<Longrightarrow> map_prod projr projr ` B \<subseteq> {(x,y). A x y}"
by (force simp: projr_def image_iff dest!: spec[of _ "Inl ()"] split: sum.splits)
lemma subset_rel_sumI: "B \<subseteq> {(x,y). A x y} \<Longrightarrow> rel_sum ((=) :: unit => unit => bool) A
(if x \<in> B then Inr (fst x) else Inl ())
(if x \<in> B then Inr (snd x) else Inl ())"
by auto
lemma relcompp_eq_Grp_neq_bot: "(=) OO (Grp UNIV f)\<inverse>\<inverse> \<noteq> bot"
unfolding Grp_def relcompp_apply fun_eq_iff by blast
lemma rel_fun_rel_OO1: "(rel_fun Q (rel_fun R (=))) A B \<Longrightarrow> conversep Q OO A OO R \<le> B"
by (auto simp: rel_fun_def)
lemma rel_fun_rel_OO2: "(rel_fun Q (rel_fun R (=))) A B \<Longrightarrow> Q OO B OO conversep R \<le> A"
by (auto simp: rel_fun_def)
lemma rel_sum_eq2_nonempty: "rel_sum (=) A OO rel_sum (=) B \<noteq> bot"
by (auto simp: fun_eq_iff relcompp_apply intro!: exI[of _ "Inl _"])
lemma rel_sum_eq3_nonempty: "rel_sum (=) A OO (rel_sum (=) B OO rel_sum (=) C) \<noteq> bot"
by (auto simp: fun_eq_iff relcompp_apply intro!: exI[of _ "Inl _"])
lemma hypsubst: "A = B \<Longrightarrow> x \<in> B \<Longrightarrow> (x \<in> A \<Longrightarrow> P) \<Longrightarrow> P" by simp
lemma Quotient_crel_quotient: "Quotient R Abs Rep T \<Longrightarrow> equivp R \<Longrightarrow> T \<equiv> (\<lambda>x y. Abs x = y)"
by (drule Quotient_cr_rel) (auto simp: fun_eq_iff equivp_reflp intro!: eq_reflection)
lemma Quotient_crel_typedef: "Quotient (eq_onp P) Abs Rep T \<Longrightarrow> T \<equiv> (\<lambda>x y. x = Rep y)"
unfolding Quotient_def
by (auto 0 4 simp: fun_eq_iff eq_onp_def intro: sym intro!: eq_reflection)
lemma Quotient_crel_typecopy: "Quotient (=) Abs Rep T \<Longrightarrow> T \<equiv> (\<lambda>x y. x = Rep y)"
by (subst (asm) eq_onp_True[symmetric]) (rule Quotient_crel_typedef)
lemma equivp_add_relconj:
assumes equiv: "equivp R" "equivp R'" and le: "S OO T OO U \<le> R OO STU OO R'"
shows "R OO S OO T OO U OO R' \<le> R OO STU OO R'"
proof -
have trans: "R OO R \<le> R" "R' OO R' \<le> R'"
using equiv unfolding equivp_reflp_symp_transp transp_relcompp by blast+
have "R OO S OO T OO U OO R' = R OO (S OO T OO U) OO R'"
unfolding relcompp_assoc ..
also have "\<dots> \<le> R OO (R OO STU OO R') OO R'"
by (intro le relcompp_mono order_refl)
also have "\<dots> \<le> (R OO R) OO STU OO (R' OO R')"
unfolding relcompp_assoc ..
also have "\<dots> \<le> R OO STU OO R'"
by (intro trans relcompp_mono order_refl)
finally show ?thesis .
qed
lemma Grp_conversep_eq_onp: "((BNF_Def.Grp UNIV f)\<inverse>\<inverse> OO BNF_Def.Grp UNIV f) = eq_onp (\<lambda>x. x \<in> range f)"
by (auto simp: fun_eq_iff Grp_def eq_onp_def image_iff)
lemma Grp_conversep_nonempty: "(BNF_Def.Grp UNIV f)\<inverse>\<inverse> OO BNF_Def.Grp UNIV f \<noteq> bot"
by (auto simp: fun_eq_iff Grp_def)
lemma relcomppI2: "r a b \<Longrightarrow> s b c \<Longrightarrow> t c d \<Longrightarrow> (r OO s OO t) a d"
by (auto)
lemma rel_conj_eq_onp: "equivp R \<Longrightarrow> rel_conj R (eq_onp P) \<le> R"
by (auto simp: eq_onp_def transp_def equivp_def)
lemma Quotient_Quotient3: "Quotient R Abs Rep T \<Longrightarrow> Quotient3 R Abs Rep"
unfolding Quotient_def Quotient3_def by blast
lemma Quotient_reflp_imp_equivp: "Quotient R Abs Rep T \<Longrightarrow> reflp R \<Longrightarrow> equivp R"
using Quotient_symp Quotient_transp equivpI by blast
lemma Quotient_eq_onp_typedef:
"Quotient (eq_onp P) Abs Rep cr \<Longrightarrow> type_definition Rep Abs {x. P x}"
unfolding Quotient_def eq_onp_def
by unfold_locales auto
lemma Quotient_eq_onp_type_copy:
"Quotient (=) Abs Rep cr \<Longrightarrow> type_definition Rep Abs UNIV"
unfolding Quotient_def eq_onp_def
by unfold_locales auto
ML_file "Tools/BNF/bnf_lift.ML"
hide_fact
sum_insert_Inl_unit lift_sum_unit_vimage_commute insert_Inl_int_map_sum_unit
image_map_sum_unit_subset subset_lift_sum_unitD UNIV_sum_unit_conv subset_vimage_image_subset
relcompp_mem_Grp_neq_bot comp_projr_Inr in_rel_sum_in_image_projr subset_rel_sumI
relcompp_eq_Grp_neq_bot rel_fun_rel_OO1 rel_fun_rel_OO2 rel_sum_eq2_nonempty rel_sum_eq3_nonempty
hypsubst equivp_add_relconj Grp_conversep_eq_onp Grp_conversep_nonempty relcomppI2 rel_conj_eq_onp
Quotient_reflp_imp_equivp Quotient_Quotient3
end