Adapted to new simplifier.
(* Title: ZF/IMP/Bexp.ML
ID: $Id$
Author: Heiko Loetzbeyer & Robert Sandner, TUM
Copyright 1994 TUM
*)
structure Bexp = Datatype_Fun
(
val thy = Aexp.thy;
val thy_name = "Bexp"
val rec_specs =
[
(
"bexp", "univ(aexp Un ((nat*nat)->bool) )",
[
( ["true","false"], "i", NoSyn),
( ["noti"], "i => i", NoSyn),
( ["andi"], "[i,i]=>i", Infixl 60),
( ["ori"], "[i,i]=>i", Infixl 60),
( ["ROp"], "[i,i,i] => i", NoSyn)
]
)
];
val rec_styp = "i";
val sintrs =
[
"true : bexp",
"false : bexp",
"[| a0 : aexp; a1 : aexp; f: (nat*nat)->bool |] ==> ROp(f,a0,a1) : bexp",
"b : bexp ==> noti(b) : bexp",
"[| b0 : bexp; b1 : bexp |] ==> b0 andi b1 : bexp",
"[| b0 : bexp; b1 : bexp |] ==> b0 ori b1 : bexp"
];
val monos = [];
val type_intrs = datatype_intrs;
val type_elims = datatype_elims;
);