Adapted to new simplifier.
(* Title: ZF/IMP/Equiv.thy
ID: $Id$
Author: Heiko Loetzbeyer and Robert Sandner, TU München
*)
header {* Equivalence *}
theory Equiv = Denotation + Com:
lemma aexp_iff [rule_format]:
"[| a \<in> aexp; sigma: loc -> nat |]
==> ALL n. <a,sigma> -a-> n <-> A(a,sigma) = n"
apply (erule aexp.induct)
apply (force intro!: evala.intros)+
done
declare aexp_iff [THEN iffD1, simp]
aexp_iff [THEN iffD2, intro!]
inductive_cases [elim!]:
"<true,sigma> -b-> x"
"<false,sigma> -b-> x"
"<ROp(f,a0,a1),sigma> -b-> x"
"<noti(b),sigma> -b-> x"
"<b0 andi b1,sigma> -b-> x"
"<b0 ori b1,sigma> -b-> x"
lemma bexp_iff [rule_format]:
"[| b \<in> bexp; sigma: loc -> nat |]
==> ALL w. <b,sigma> -b-> w <-> B(b,sigma) = w"
apply (erule bexp.induct)
apply (auto intro!: evalb.intros)
done
declare bexp_iff [THEN iffD1, simp]
bexp_iff [THEN iffD2, intro!]
lemma com1: "<c,sigma> -c-> sigma' ==> <sigma,sigma'> \<in> C(c)"
apply (erule evalc.induct)
apply (simp_all (no_asm_simp))
txt {* @{text skip} *}
apply fast
txt {* @{text assign} *}
apply (simp add: update_type)
txt {* @{text comp} *}
apply fast
txt {* @{text while} *}
apply (erule Gamma_bnd_mono [THEN lfp_unfold, THEN ssubst, OF C_subset])
apply (simp add: Gamma_def)
apply force
txt {* recursive case of @{text while} *}
apply (erule Gamma_bnd_mono [THEN lfp_unfold, THEN ssubst, OF C_subset])
apply (auto simp add: Gamma_def)
done
declare B_type [intro!] A_type [intro!]
declare evalc.intros [intro]
lemma com2 [rule_format]: "c \<in> com ==> \<forall>x \<in> C(c). <c,fst(x)> -c-> snd(x)"
apply (erule com.induct)
txt {* @{text skip} *}
apply force
txt {* @{text assign} *}
apply force
txt {* @{text comp} *}
apply force
txt {* @{text while} *}
apply safe
apply simp_all
apply (frule Gamma_bnd_mono [OF C_subset], erule Fixedpt.induct, assumption)
apply (unfold Gamma_def)
apply force
txt {* @{text if} *}
apply auto
done
subsection {* Main theorem *}
theorem com_equivalence:
"c \<in> com ==> C(c) = {io \<in> (loc->nat) \<times> (loc->nat). <c,fst(io)> -c-> snd(io)}"
by (force intro: C_subset [THEN subsetD] elim: com2 dest: com1)
end