mod in recdef allows to access the correct simpset via simpset().
(* Title: LK/lk.thy
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
Classical First-Order Sequent Calculus
*)
LK = Pure +
classes term < logic
default term
types
o sequence seqobj seqcont sequ sobj
arities
o :: logic
consts
True,False :: "o"
"=" :: "['a,'a] => o" (infixl 50)
"Not" :: "o => o" ("~ _" [40] 40)
"&" :: "[o,o] => o" (infixr 35)
"|" :: "[o,o] => o" (infixr 30)
"-->","<->" :: "[o,o] => o" (infixr 25)
The :: "('a => o) => 'a" (binder "THE " 10)
All :: "('a => o) => o" (binder "ALL " 10)
Ex :: "('a => o) => o" (binder "EX " 10)
(*Representation of sequents*)
Trueprop :: "[sobj=>sobj,sobj=>sobj] => prop"
Seqof :: "o => sobj=>sobj"
"@Trueprop" :: "[sequence,sequence] => prop" ("((_)/ |- (_))" [6,6] 5)
"@MtSeq" :: "sequence" ("" [] 1000)
"@NmtSeq" :: "[seqobj,seqcont] => sequence" ("__" [] 1000)
"@MtSeqCont" :: "seqcont" ("" [] 1000)
"@SeqCont" :: "[seqobj,seqcont] => seqcont" (",/ __" [] 1000)
"" :: "o => seqobj" ("_" [] 1000)
"@SeqId" :: "id => seqobj" ("$_" [] 1000)
"@SeqVar" :: "var => seqobj" ("$_")
rules
(*Structural rules*)
basic "$H, P, $G |- $E, P, $F"
thinR "$H |- $E, $F ==> $H |- $E, P, $F"
thinL "$H, $G |- $E ==> $H, P, $G |- $E"
cut "[| $H |- $E, P; $H, P |- $E |] ==> $H |- $E"
(*Propositional rules*)
conjR "[| $H|- $E, P, $F; $H|- $E, Q, $F |] ==> $H|- $E, P&Q, $F"
conjL "$H, P, Q, $G |- $E ==> $H, P & Q, $G |- $E"
disjR "$H |- $E, P, Q, $F ==> $H |- $E, P|Q, $F"
disjL "[| $H, P, $G |- $E; $H, Q, $G |- $E |] ==> $H, P|Q, $G |- $E"
impR "$H, P |- $E, Q, $F ==> $H |- $E, P-->Q, $F"
impL "[| $H,$G |- $E,P; $H, Q, $G |- $E |] ==> $H, P-->Q, $G |- $E"
notR "$H, P |- $E, $F ==> $H |- $E, ~P, $F"
notL "$H, $G |- $E, P ==> $H, ~P, $G |- $E"
FalseL "$H, False, $G |- $E"
True_def "True == False-->False"
iff_def "P<->Q == (P-->Q) & (Q-->P)"
(*Quantifiers*)
allR "(!!x.$H |- $E, P(x), $F) ==> $H |- $E, ALL x.P(x), $F"
allL "$H, P(x), $G, ALL x.P(x) |- $E ==> $H, ALL x.P(x), $G |- $E"
exR "$H |- $E, P(x), $F, EX x.P(x) ==> $H |- $E, EX x.P(x), $F"
exL "(!!x.$H, P(x), $G |- $E) ==> $H, EX x.P(x), $G |- $E"
(*Equality*)
refl "$H |- $E, a=a, $F"
sym "$H |- $E, a=b, $F ==> $H |- $E, b=a, $F"
trans "[| $H|- $E, a=b, $F; $H|- $E, b=c, $F |] ==> $H|- $E, a=c, $F"
(*Descriptions*)
The "[| $H |- $E, P(a), $F; !!x.$H, P(x) |- $E, x=a, $F |] ==> \
\ $H |- $E, P(THE x.P(x)), $F"
end
ML
(*Abstract over "sobj" -- representation of a sequence of formulae *)
fun abs_sobj t = Abs("sobj", Type("sobj",[]), t);
(*Representation of empty sequence*)
val Sempty = abs_sobj (Bound 0);
fun seq_obj_tr(Const("@SeqId",_)$id) = id |
seq_obj_tr(Const("@SeqVar",_)$id) = id |
seq_obj_tr(fm) = Const("Seqof",dummyT)$fm;
fun seq_tr(_$obj$seq) = seq_obj_tr(obj)$seq_tr(seq) |
seq_tr(_) = Bound 0;
fun seq_tr1(Const("@MtSeq",_)) = Sempty |
seq_tr1(seq) = abs_sobj(seq_tr seq);
fun true_tr[s1,s2] = Const("Trueprop",dummyT)$seq_tr1 s1$seq_tr1 s2;
fun seq_obj_tr'(Const("Seqof",_)$fm) = fm |
seq_obj_tr'(id) = Const("@SeqId",dummyT)$id;
fun seq_tr'(obj$sq,C) =
let val sq' = case sq of
Bound 0 => Const("@MtSeqCont",dummyT) |
_ => seq_tr'(sq,Const("@SeqCont",dummyT))
in C $ seq_obj_tr' obj $ sq' end;
fun seq_tr1'(Bound 0) = Const("@MtSeq",dummyT) |
seq_tr1' s = seq_tr'(s,Const("@NmtSeq",dummyT));
fun true_tr'[Abs(_,_,s1),Abs(_,_,s2)] =
Const("@Trueprop",dummyT)$seq_tr1' s1$seq_tr1' s2;
val parse_translation = [("@Trueprop",true_tr)];
val print_translation = [("Trueprop",true_tr')];