(* Title: Tools/atomize_elim.ML
Author: Alexander Krauss, TU Muenchen
Turn elimination rules into atomic expressions in the object logic.
*)
signature ATOMIZE_ELIM =
sig
val atomize_elim_conv : Proof.context -> conv
val full_atomize_elim_conv : Proof.context -> conv
val atomize_elim_tac : Proof.context -> int -> tactic
end
structure Atomize_Elim : ATOMIZE_ELIM =
struct
(* atomize_elim rules *)
val named_theorems =
Context.>>> (Context.map_theory_result
(Named_Target.theory_init #>
Named_Theorems.declare @{binding atomize_elim} "atomize_elim rewrite rule" ##>
Local_Theory.exit_global));
(* More conversions: *)
local open Conv in
(* Compute inverse permutation *)
fun invert_perm pi =
(pi @ subtract (op =) pi (0 upto (fold Integer.max pi 0)))
|> map_index I
|> sort (int_ord o apply2 snd)
|> map fst
(* rearrange_prems as a conversion *)
fun rearrange_prems_conv pi ct =
let
val pi' = 0 :: map (Integer.add 1) pi
val fwd = Thm.trivial ct
|> Drule.rearrange_prems pi'
val back = Thm.trivial (snd (Thm.dest_implies (Thm.cprop_of fwd)))
|> Drule.rearrange_prems (invert_perm pi')
in Thm.equal_intr fwd back end
(* convert !!thesis. (!!x y z. ... => thesis) ==> ...
==> (!!a b c. ... => thesis)
==> thesis
to
(EX x y z. ...) | ... | (EX a b c. ...)
*)
fun atomize_elim_conv ctxt ct =
(forall_conv (prems_conv ~1 o Object_Logic.atomize_prems o snd) ctxt
then_conv Raw_Simplifier.rewrite ctxt true (Named_Theorems.get ctxt named_theorems)
then_conv (fn ct' => if can Object_Logic.dest_judgment ct'
then all_conv ct'
else raise CTERM ("atomize_elim", [ct', ct])))
ct
(* Move the thesis-quantifier inside over other quantifiers and unrelated prems *)
fun thesis_miniscope_conv inner_cv ctxt =
let
(* check if the outermost quantifier binds the conclusion *)
fun is_forall_thesis t =
case Logic.strip_assums_concl t of
(_ $ Bound i) => i = length (Logic.strip_params t) - 1
| _ => false
(* move unrelated assumptions out of the quantification *)
fun movea_conv ctxt ct =
let
val _ $ Abs (_, _, b) = Thm.term_of ct
val idxs = fold_index (fn (i, t) => not (Term.is_dependent t) ? cons i)
(Logic.strip_imp_prems b) []
|> rev
fun skip_over_assm cv = rewr_conv (Thm.symmetric Drule.norm_hhf_eq)
then_conv (implies_concl_conv cv)
in
(forall_conv (K (rearrange_prems_conv idxs)) ctxt
then_conv (funpow (length idxs) skip_over_assm (inner_cv ctxt)))
ct
end
(* move current quantifier to the right *)
fun moveq_conv ctxt =
(rewr_conv @{thm swap_params} then_conv (forall_conv (moveq_conv o snd) ctxt))
else_conv (movea_conv ctxt)
fun ms_conv ctxt ct =
if is_forall_thesis (Thm.term_of ct)
then moveq_conv ctxt ct
else (implies_concl_conv (ms_conv ctxt)
else_conv
(forall_conv (ms_conv o snd) ctxt))
ct
in
ms_conv ctxt
end
val full_atomize_elim_conv = thesis_miniscope_conv atomize_elim_conv
end
fun atomize_elim_tac ctxt = SUBGOAL (fn (subg, i) =>
let
val thy = Proof_Context.theory_of ctxt
val _ $ thesis = Logic.strip_assums_concl subg
(* Introduce a quantifier first if the thesis is not bound *)
val quantify_thesis =
if is_Bound thesis then all_tac
else let
val cthesis = Thm.global_cterm_of thy thesis
val rule = instantiate' [SOME (Thm.ctyp_of_cterm cthesis)] [NONE, SOME cthesis]
@{thm meta_spec}
in
compose_tac ctxt (false, rule, 1) i
end
in
quantify_thesis
THEN (CONVERSION (full_atomize_elim_conv ctxt) i)
end)
val _ =
Theory.setup
(Method.setup @{binding atomize_elim} (Scan.succeed (SIMPLE_METHOD' o atomize_elim_tac))
"convert obtains statement to atomic object logic goal")
end