(* Title: HOLCF/Domain.thy
Author: Brian Huffman
*)
header {* Domain package *}
theory Domain
imports Ssum Sprod Up One Tr Fixrec Representable
uses
("Tools/cont_consts.ML")
("Tools/cont_proc.ML")
("Tools/Domain/domain_constructors.ML")
("Tools/Domain/domain_axioms.ML")
("Tools/Domain/domain_induction.ML")
("Tools/Domain/domain.ML")
begin
default_sort pcpo
subsection {* Casedist *}
text {* Lemmas for proving nchotomy rule: *}
lemma ex_one_bottom_iff:
"(\<exists>x. P x \<and> x \<noteq> \<bottom>) = P ONE"
by simp
lemma ex_up_bottom_iff:
"(\<exists>x. P x \<and> x \<noteq> \<bottom>) = (\<exists>x. P (up\<cdot>x))"
by (safe, case_tac x, auto)
lemma ex_sprod_bottom_iff:
"(\<exists>y. P y \<and> y \<noteq> \<bottom>) =
(\<exists>x y. (P (:x, y:) \<and> x \<noteq> \<bottom>) \<and> y \<noteq> \<bottom>)"
by (safe, case_tac y, auto)
lemma ex_sprod_up_bottom_iff:
"(\<exists>y. P y \<and> y \<noteq> \<bottom>) =
(\<exists>x y. P (:up\<cdot>x, y:) \<and> y \<noteq> \<bottom>)"
by (safe, case_tac y, simp, case_tac x, auto)
lemma ex_ssum_bottom_iff:
"(\<exists>x. P x \<and> x \<noteq> \<bottom>) =
((\<exists>x. P (sinl\<cdot>x) \<and> x \<noteq> \<bottom>) \<or>
(\<exists>x. P (sinr\<cdot>x) \<and> x \<noteq> \<bottom>))"
by (safe, case_tac x, auto)
lemma exh_start: "p = \<bottom> \<or> (\<exists>x. p = x \<and> x \<noteq> \<bottom>)"
by auto
lemmas ex_bottom_iffs =
ex_ssum_bottom_iff
ex_sprod_up_bottom_iff
ex_sprod_bottom_iff
ex_up_bottom_iff
ex_one_bottom_iff
text {* Rules for turning nchotomy into exhaust: *}
lemma exh_casedist0: "\<lbrakk>R; R \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P" (* like make_elim *)
by auto
lemma exh_casedist1: "((P \<or> Q \<Longrightarrow> R) \<Longrightarrow> S) \<equiv> (\<lbrakk>P \<Longrightarrow> R; Q \<Longrightarrow> R\<rbrakk> \<Longrightarrow> S)"
by rule auto
lemma exh_casedist2: "(\<exists>x. P x \<Longrightarrow> Q) \<equiv> (\<And>x. P x \<Longrightarrow> Q)"
by rule auto
lemma exh_casedist3: "(P \<and> Q \<Longrightarrow> R) \<equiv> (P \<Longrightarrow> Q \<Longrightarrow> R)"
by rule auto
lemmas exh_casedists = exh_casedist1 exh_casedist2 exh_casedist3
subsection {* Installing the domain package *}
lemmas con_strict_rules =
sinl_strict sinr_strict spair_strict1 spair_strict2
lemmas con_bottom_iff_rules =
sinl_bottom_iff sinr_bottom_iff spair_bottom_iff up_defined ONE_defined
lemmas con_below_iff_rules =
sinl_below sinr_below sinl_below_sinr sinr_below_sinl con_bottom_iff_rules
lemmas con_eq_iff_rules =
sinl_eq sinr_eq sinl_eq_sinr sinr_eq_sinl con_bottom_iff_rules
lemmas sel_strict_rules =
cfcomp2 sscase1 sfst_strict ssnd_strict fup1
lemma sel_app_extra_rules:
"sscase\<cdot>ID\<cdot>\<bottom>\<cdot>(sinr\<cdot>x) = \<bottom>"
"sscase\<cdot>ID\<cdot>\<bottom>\<cdot>(sinl\<cdot>x) = x"
"sscase\<cdot>\<bottom>\<cdot>ID\<cdot>(sinl\<cdot>x) = \<bottom>"
"sscase\<cdot>\<bottom>\<cdot>ID\<cdot>(sinr\<cdot>x) = x"
"fup\<cdot>ID\<cdot>(up\<cdot>x) = x"
by (cases "x = \<bottom>", simp, simp)+
lemmas sel_app_rules =
sel_strict_rules sel_app_extra_rules
ssnd_spair sfst_spair up_defined spair_defined
lemmas sel_bottom_iff_rules =
cfcomp2 sfst_bottom_iff ssnd_bottom_iff
lemmas take_con_rules =
ssum_map_sinl' ssum_map_sinr' sprod_map_spair' u_map_up
deflation_strict deflation_ID ID1 cfcomp2
use "Tools/cont_consts.ML"
use "Tools/cont_proc.ML"
use "Tools/Domain/domain_axioms.ML"
use "Tools/Domain/domain_constructors.ML"
use "Tools/Domain/domain_induction.ML"
use "Tools/Domain/domain.ML"
end