\documentclass[11pt,a4paper]{article}
\usepackage[T1]{fontenc}
\usepackage{isabelle,isabellesym,pdfsetup}
\usepackage[only,bigsqcap]{stmaryrd}
\urlstyle{rm}\isabellestyle{it}
\pagestyle{headings}
\hyphenation{Isabelle}
\hyphenation{Isar}
\begin{document}
\title{Lattices and Orders in Isabelle/HOL}
\author{Markus Wenzel \\ TU M\"unchen}
\maketitle
\begin{abstract}
We consider abstract structures of orders and lattices. Many fundamental
concepts of lattice theory are developed, including dual structures,
properties of bounds versus algebraic laws, lattice operations versus
set-theoretic ones etc. We also give example instantiations of lattices and
orders, such as direct products and function spaces. Well-known properties
are demonstrated, like the Knaster-Tarski Theorem for complete lattices.
This formal theory development may serve as an example of applying
Isabelle/HOL to the domain of mathematical reasoning about ``axiomatic''
structures. Apart from the simply-typed classical set-theory of HOL, we
employ Isabelle's system of axiomatic type classes for expressing structures
and functors in a light-weight manner. Proofs are expressed in the Isar
language for readable formal proof, while aiming at its ``best-style'' of
representing formal reasoning.
\end{abstract}
\tableofcontents
\newpage
{
\parindent 0pt\parskip 0.7ex
\pagestyle{myheadings}
\renewcommand{\setisabellecontext}[1]{\markright{THEORY~``#1''}}
\input{session}
}
\nocite{Wenzel:1999:TPHOL}
\nocite{Wenzel:2000:isar-ref}
\nocite{Wenzel:2000:axclass}
\nocite{Bauer-Wenzel:2000:HB}
\bibliographystyle{abbrv}
\bibliography{root}
\end{document}