src/HOL/AxClasses/Tutorial/BoolGroupInsts.thy
author wenzelm
Wed, 17 Mar 1999 13:42:42 +0100
changeset 6378 5780d71203bb
parent 2907 0e272e4c7cb2
permissions -rw-r--r--
adapted AxClass.add_axclass; PureThy.get_thm axioms;

(*  Title:      HOL/AxClasses/Tutorial/BoolGroupInsts.thy
    ID:         $Id$
    Author:     Markus Wenzel, TU Muenchen

Define overloaded constants "<*>", "inverse", "1" on type "bool"
appropriately, then prove that this forms a group.
*)

BoolGroupInsts = Group +

(* bool as abelian group *)

defs
  prod_bool_def     "x <*> y   == x ~= (y::bool)"
  inverse_bool_def  "inverse x == x::bool"
  unit_bool_def     "1         == False"

instance
  bool :: agroup                {| ALLGOALS (fast_tac HOL_cs) |}
  (*"instance" automatically uses above defs, 
    the remaining goals are proven 'inline'*)

end