(* Title: FOL/ex/Intro.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
Derives some inference rules, illustrating the use of definitions.
*)
section \<open>Examples for the manual ``Introduction to Isabelle''\<close>
theory Intro
imports FOL
begin
subsubsection \<open>Some simple backward proofs\<close>
lemma mythm: "P \<or> P \<longrightarrow> P"
apply (rule impI)
apply (rule disjE)
prefer 3 apply (assumption)
prefer 2 apply (assumption)
apply assumption
done
lemma "(P \<and> Q) \<or> R \<longrightarrow> (P \<or> R)"
apply (rule impI)
apply (erule disjE)
apply (drule conjunct1)
apply (rule disjI1)
apply (rule_tac [2] disjI2)
apply assumption+
done
text \<open>Correct version, delaying use of \<open>spec\<close> until last.\<close>
lemma "(\<forall>x y. P(x,y)) \<longrightarrow> (\<forall>z w. P(w,z))"
apply (rule impI)
apply (rule allI)
apply (rule allI)
apply (drule spec)
apply (drule spec)
apply assumption
done
subsubsection \<open>Demonstration of \<open>fast\<close>\<close>
lemma "(\<exists>y. \<forall>x. J(y,x) \<longleftrightarrow> \<not> J(x,x)) \<longrightarrow> \<not> (\<forall>x. \<exists>y. \<forall>z. J(z,y) \<longleftrightarrow> \<not> J(z,x))"
apply fast
done
lemma "\<forall>x. P(x,f(x)) \<longleftrightarrow> (\<exists>y. (\<forall>z. P(z,y) \<longrightarrow> P(z,f(x))) \<and> P(x,y))"
apply fast
done
subsubsection \<open>Derivation of conjunction elimination rule\<close>
lemma
assumes major: "P \<and> Q"
and minor: "\<lbrakk>P; Q\<rbrakk> \<Longrightarrow> R"
shows R
apply (rule minor)
apply (rule major [THEN conjunct1])
apply (rule major [THEN conjunct2])
done
subsection \<open>Derived rules involving definitions\<close>
text \<open>Derivation of negation introduction\<close>
lemma
assumes "P \<Longrightarrow> False"
shows "\<not> P"
apply (unfold not_def)
apply (rule impI)
apply (rule assms)
apply assumption
done
lemma
assumes major: "\<not> P"
and minor: P
shows R
apply (rule FalseE)
apply (rule mp)
apply (rule major [unfolded not_def])
apply (rule minor)
done
text \<open>Alternative proof of the result above\<close>
lemma
assumes major: "\<not> P"
and minor: P
shows R
apply (rule minor [THEN major [unfolded not_def, THEN mp, THEN FalseE]])
done
end