(* Title: HOL/Inductive.thy
Author: Markus Wenzel, TU Muenchen
*)
section \<open>Knaster-Tarski Fixpoint Theorem and inductive definitions\<close>
theory Inductive
imports Complete_Lattices Ctr_Sugar
keywords
"inductive" "coinductive" "inductive_cases" "inductive_simps" :: thy_decl and
"monos" and
"print_inductives" :: diag and
"old_rep_datatype" :: thy_goal and
"primrec" :: thy_decl
begin
subsection \<open>Least and greatest fixed points\<close>
context complete_lattice
begin
definition
lfp :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a" where
"lfp f = Inf {u. f u \<le> u}" \<comment>\<open>least fixed point\<close>
definition
gfp :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a" where
"gfp f = Sup {u. u \<le> f u}" \<comment>\<open>greatest fixed point\<close>
subsection\<open>Proof of Knaster-Tarski Theorem using @{term lfp}\<close>
text\<open>@{term "lfp f"} is the least upper bound of
the set @{term "{u. f(u) \<le> u}"}\<close>
lemma lfp_lowerbound: "f A \<le> A ==> lfp f \<le> A"
by (auto simp add: lfp_def intro: Inf_lower)
lemma lfp_greatest: "(!!u. f u \<le> u ==> A \<le> u) ==> A \<le> lfp f"
by (auto simp add: lfp_def intro: Inf_greatest)
end
lemma lfp_lemma2: "mono f ==> f (lfp f) \<le> lfp f"
by (iprover intro: lfp_greatest order_trans monoD lfp_lowerbound)
lemma lfp_lemma3: "mono f ==> lfp f \<le> f (lfp f)"
by (iprover intro: lfp_lemma2 monoD lfp_lowerbound)
lemma lfp_unfold: "mono f ==> lfp f = f (lfp f)"
by (iprover intro: order_antisym lfp_lemma2 lfp_lemma3)
lemma lfp_const: "lfp (\<lambda>x. t) = t"
by (rule lfp_unfold) (simp add:mono_def)
subsection \<open>General induction rules for least fixed points\<close>
lemma lfp_ordinal_induct[case_names mono step union]:
fixes f :: "'a::complete_lattice \<Rightarrow> 'a"
assumes mono: "mono f"
and P_f: "\<And>S. P S \<Longrightarrow> S \<le> lfp f \<Longrightarrow> P (f S)"
and P_Union: "\<And>M. \<forall>S\<in>M. P S \<Longrightarrow> P (Sup M)"
shows "P (lfp f)"
proof -
let ?M = "{S. S \<le> lfp f \<and> P S}"
have "P (Sup ?M)" using P_Union by simp
also have "Sup ?M = lfp f"
proof (rule antisym)
show "Sup ?M \<le> lfp f" by (blast intro: Sup_least)
hence "f (Sup ?M) \<le> f (lfp f)" by (rule mono [THEN monoD])
hence "f (Sup ?M) \<le> lfp f" using mono [THEN lfp_unfold] by simp
hence "f (Sup ?M) \<in> ?M" using P_Union by simp (intro P_f Sup_least, auto)
hence "f (Sup ?M) \<le> Sup ?M" by (rule Sup_upper)
thus "lfp f \<le> Sup ?M" by (rule lfp_lowerbound)
qed
finally show ?thesis .
qed
theorem lfp_induct:
assumes mono: "mono f" and ind: "f (inf (lfp f) P) \<le> P"
shows "lfp f \<le> P"
proof (induction rule: lfp_ordinal_induct)
case (step S) then show ?case
by (intro order_trans[OF _ ind] monoD[OF mono]) auto
qed (auto intro: mono Sup_least)
lemma lfp_induct_set:
assumes lfp: "a: lfp(f)"
and mono: "mono(f)"
and indhyp: "!!x. [| x: f(lfp(f) Int {x. P(x)}) |] ==> P(x)"
shows "P(a)"
by (rule lfp_induct [THEN subsetD, THEN CollectD, OF mono _ lfp])
(auto simp: intro: indhyp)
lemma lfp_ordinal_induct_set:
assumes mono: "mono f"
and P_f: "!!S. P S ==> P(f S)"
and P_Union: "!!M. !S:M. P S ==> P (\<Union>M)"
shows "P(lfp f)"
using assms by (rule lfp_ordinal_induct)
text\<open>Definition forms of \<open>lfp_unfold\<close> and \<open>lfp_induct\<close>,
to control unfolding\<close>
lemma def_lfp_unfold: "[| h==lfp(f); mono(f) |] ==> h = f(h)"
by (auto intro!: lfp_unfold)
lemma def_lfp_induct:
"[| A == lfp(f); mono(f);
f (inf A P) \<le> P
|] ==> A \<le> P"
by (blast intro: lfp_induct)
lemma def_lfp_induct_set:
"[| A == lfp(f); mono(f); a:A;
!!x. [| x: f(A Int {x. P(x)}) |] ==> P(x)
|] ==> P(a)"
by (blast intro: lfp_induct_set)
(*Monotonicity of lfp!*)
lemma lfp_mono: "(!!Z. f Z \<le> g Z) ==> lfp f \<le> lfp g"
by (rule lfp_lowerbound [THEN lfp_greatest], blast intro: order_trans)
subsection \<open>Proof of Knaster-Tarski Theorem using @{term gfp}\<close>
text\<open>@{term "gfp f"} is the greatest lower bound of
the set @{term "{u. u \<le> f(u)}"}\<close>
lemma gfp_upperbound: "X \<le> f X ==> X \<le> gfp f"
by (auto simp add: gfp_def intro: Sup_upper)
lemma gfp_least: "(!!u. u \<le> f u ==> u \<le> X) ==> gfp f \<le> X"
by (auto simp add: gfp_def intro: Sup_least)
lemma gfp_lemma2: "mono f ==> gfp f \<le> f (gfp f)"
by (iprover intro: gfp_least order_trans monoD gfp_upperbound)
lemma gfp_lemma3: "mono f ==> f (gfp f) \<le> gfp f"
by (iprover intro: gfp_lemma2 monoD gfp_upperbound)
lemma gfp_unfold: "mono f ==> gfp f = f (gfp f)"
by (iprover intro: order_antisym gfp_lemma2 gfp_lemma3)
subsection \<open>Coinduction rules for greatest fixed points\<close>
text\<open>weak version\<close>
lemma weak_coinduct: "[| a: X; X \<subseteq> f(X) |] ==> a : gfp(f)"
by (rule gfp_upperbound [THEN subsetD]) auto
lemma weak_coinduct_image: "!!X. [| a : X; g`X \<subseteq> f (g`X) |] ==> g a : gfp f"
apply (erule gfp_upperbound [THEN subsetD])
apply (erule imageI)
done
lemma coinduct_lemma:
"[| X \<le> f (sup X (gfp f)); mono f |] ==> sup X (gfp f) \<le> f (sup X (gfp f))"
apply (frule gfp_lemma2)
apply (drule mono_sup)
apply (rule le_supI)
apply assumption
apply (rule order_trans)
apply (rule order_trans)
apply assumption
apply (rule sup_ge2)
apply assumption
done
text\<open>strong version, thanks to Coen and Frost\<close>
lemma coinduct_set: "[| mono(f); a: X; X \<subseteq> f(X Un gfp(f)) |] ==> a : gfp(f)"
by (rule weak_coinduct[rotated], rule coinduct_lemma) blast+
lemma gfp_fun_UnI2: "[| mono(f); a: gfp(f) |] ==> a: f(X Un gfp(f))"
by (blast dest: gfp_lemma2 mono_Un)
lemma gfp_ordinal_induct[case_names mono step union]:
fixes f :: "'a::complete_lattice \<Rightarrow> 'a"
assumes mono: "mono f"
and P_f: "\<And>S. P S \<Longrightarrow> gfp f \<le> S \<Longrightarrow> P (f S)"
and P_Union: "\<And>M. \<forall>S\<in>M. P S \<Longrightarrow> P (Inf M)"
shows "P (gfp f)"
proof -
let ?M = "{S. gfp f \<le> S \<and> P S}"
have "P (Inf ?M)" using P_Union by simp
also have "Inf ?M = gfp f"
proof (rule antisym)
show "gfp f \<le> Inf ?M" by (blast intro: Inf_greatest)
hence "f (gfp f) \<le> f (Inf ?M)" by (rule mono [THEN monoD])
hence "gfp f \<le> f (Inf ?M)" using mono [THEN gfp_unfold] by simp
hence "f (Inf ?M) \<in> ?M" using P_Union by simp (intro P_f Inf_greatest, auto)
hence "Inf ?M \<le> f (Inf ?M)" by (rule Inf_lower)
thus "Inf ?M \<le> gfp f" by (rule gfp_upperbound)
qed
finally show ?thesis .
qed
lemma coinduct: assumes mono: "mono f" and ind: "X \<le> f (sup X (gfp f))" shows "X \<le> gfp f"
proof (induction rule: gfp_ordinal_induct)
case (step S) then show ?case
by (intro order_trans[OF ind _] monoD[OF mono]) auto
qed (auto intro: mono Inf_greatest)
subsection \<open>Even Stronger Coinduction Rule, by Martin Coen\<close>
text\<open>Weakens the condition @{term "X \<subseteq> f(X)"} to one expressed using both
@{term lfp} and @{term gfp}\<close>
lemma coinduct3_mono_lemma: "mono(f) ==> mono(%x. f(x) Un X Un B)"
by (iprover intro: subset_refl monoI Un_mono monoD)
lemma coinduct3_lemma:
"[| X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f))); mono(f) |]
==> lfp(%x. f(x) Un X Un gfp(f)) \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f)))"
apply (rule subset_trans)
apply (erule coinduct3_mono_lemma [THEN lfp_lemma3])
apply (rule Un_least [THEN Un_least])
apply (rule subset_refl, assumption)
apply (rule gfp_unfold [THEN equalityD1, THEN subset_trans], assumption)
apply (rule monoD, assumption)
apply (subst coinduct3_mono_lemma [THEN lfp_unfold], auto)
done
lemma coinduct3:
"[| mono(f); a:X; X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f))) |] ==> a : gfp(f)"
apply (rule coinduct3_lemma [THEN [2] weak_coinduct])
apply (rule coinduct3_mono_lemma [THEN lfp_unfold, THEN ssubst])
apply (simp_all)
done
text\<open>Definition forms of \<open>gfp_unfold\<close> and \<open>coinduct\<close>,
to control unfolding\<close>
lemma def_gfp_unfold: "[| A==gfp(f); mono(f) |] ==> A = f(A)"
by (auto intro!: gfp_unfold)
lemma def_coinduct:
"[| A==gfp(f); mono(f); X \<le> f(sup X A) |] ==> X \<le> A"
by (iprover intro!: coinduct)
lemma def_coinduct_set:
"[| A==gfp(f); mono(f); a:X; X \<subseteq> f(X Un A) |] ==> a: A"
by (auto intro!: coinduct_set)
(*The version used in the induction/coinduction package*)
lemma def_Collect_coinduct:
"[| A == gfp(%w. Collect(P(w))); mono(%w. Collect(P(w)));
a: X; !!z. z: X ==> P (X Un A) z |] ==>
a : A"
by (erule def_coinduct_set) auto
lemma def_coinduct3:
"[| A==gfp(f); mono(f); a:X; X \<subseteq> f(lfp(%x. f(x) Un X Un A)) |] ==> a: A"
by (auto intro!: coinduct3)
text\<open>Monotonicity of @{term gfp}!\<close>
lemma gfp_mono: "(!!Z. f Z \<le> g Z) ==> gfp f \<le> gfp g"
by (rule gfp_upperbound [THEN gfp_least], blast intro: order_trans)
subsection \<open>Rules for fixed point calculus\<close>
lemma lfp_rolling:
assumes "mono g" "mono f"
shows "g (lfp (\<lambda>x. f (g x))) = lfp (\<lambda>x. g (f x))"
proof (rule antisym)
have *: "mono (\<lambda>x. f (g x))"
using assms by (auto simp: mono_def)
show "lfp (\<lambda>x. g (f x)) \<le> g (lfp (\<lambda>x. f (g x)))"
by (rule lfp_lowerbound) (simp add: lfp_unfold[OF *, symmetric])
show "g (lfp (\<lambda>x. f (g x))) \<le> lfp (\<lambda>x. g (f x))"
proof (rule lfp_greatest)
fix u assume "g (f u) \<le> u"
moreover then have "g (lfp (\<lambda>x. f (g x))) \<le> g (f u)"
by (intro assms[THEN monoD] lfp_lowerbound)
ultimately show "g (lfp (\<lambda>x. f (g x))) \<le> u"
by auto
qed
qed
lemma lfp_lfp:
assumes f: "\<And>x y w z. x \<le> y \<Longrightarrow> w \<le> z \<Longrightarrow> f x w \<le> f y z"
shows "lfp (\<lambda>x. lfp (f x)) = lfp (\<lambda>x. f x x)"
proof (rule antisym)
have *: "mono (\<lambda>x. f x x)"
by (blast intro: monoI f)
show "lfp (\<lambda>x. lfp (f x)) \<le> lfp (\<lambda>x. f x x)"
by (intro lfp_lowerbound) (simp add: lfp_unfold[OF *, symmetric])
show "lfp (\<lambda>x. lfp (f x)) \<ge> lfp (\<lambda>x. f x x)" (is "?F \<ge> _")
proof (intro lfp_lowerbound)
have *: "?F = lfp (f ?F)"
by (rule lfp_unfold) (blast intro: monoI lfp_mono f)
also have "\<dots> = f ?F (lfp (f ?F))"
by (rule lfp_unfold) (blast intro: monoI lfp_mono f)
finally show "f ?F ?F \<le> ?F"
by (simp add: *[symmetric])
qed
qed
lemma gfp_rolling:
assumes "mono g" "mono f"
shows "g (gfp (\<lambda>x. f (g x))) = gfp (\<lambda>x. g (f x))"
proof (rule antisym)
have *: "mono (\<lambda>x. f (g x))"
using assms by (auto simp: mono_def)
show "g (gfp (\<lambda>x. f (g x))) \<le> gfp (\<lambda>x. g (f x))"
by (rule gfp_upperbound) (simp add: gfp_unfold[OF *, symmetric])
show "gfp (\<lambda>x. g (f x)) \<le> g (gfp (\<lambda>x. f (g x)))"
proof (rule gfp_least)
fix u assume "u \<le> g (f u)"
moreover then have "g (f u) \<le> g (gfp (\<lambda>x. f (g x)))"
by (intro assms[THEN monoD] gfp_upperbound)
ultimately show "u \<le> g (gfp (\<lambda>x. f (g x)))"
by auto
qed
qed
lemma gfp_gfp:
assumes f: "\<And>x y w z. x \<le> y \<Longrightarrow> w \<le> z \<Longrightarrow> f x w \<le> f y z"
shows "gfp (\<lambda>x. gfp (f x)) = gfp (\<lambda>x. f x x)"
proof (rule antisym)
have *: "mono (\<lambda>x. f x x)"
by (blast intro: monoI f)
show "gfp (\<lambda>x. f x x) \<le> gfp (\<lambda>x. gfp (f x))"
by (intro gfp_upperbound) (simp add: gfp_unfold[OF *, symmetric])
show "gfp (\<lambda>x. gfp (f x)) \<le> gfp (\<lambda>x. f x x)" (is "?F \<le> _")
proof (intro gfp_upperbound)
have *: "?F = gfp (f ?F)"
by (rule gfp_unfold) (blast intro: monoI gfp_mono f)
also have "\<dots> = f ?F (gfp (f ?F))"
by (rule gfp_unfold) (blast intro: monoI gfp_mono f)
finally show "?F \<le> f ?F ?F"
by (simp add: *[symmetric])
qed
qed
subsection \<open>Inductive predicates and sets\<close>
text \<open>Package setup.\<close>
lemmas basic_monos =
subset_refl imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj
Collect_mono in_mono vimage_mono
ML_file "Tools/inductive.ML"
lemmas [mono] =
imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj
imp_mono not_mono
Ball_def Bex_def
induct_rulify_fallback
subsection \<open>Inductive datatypes and primitive recursion\<close>
text \<open>Package setup.\<close>
ML_file "Tools/Old_Datatype/old_datatype_aux.ML"
ML_file "Tools/Old_Datatype/old_datatype_prop.ML"
ML_file "Tools/Old_Datatype/old_datatype_data.ML"
ML_file "Tools/Old_Datatype/old_rep_datatype.ML"
ML_file "Tools/Old_Datatype/old_datatype_codegen.ML"
ML_file "Tools/Old_Datatype/old_primrec.ML"
ML_file "Tools/BNF/bnf_fp_rec_sugar_util.ML"
ML_file "Tools/BNF/bnf_lfp_rec_sugar.ML"
text \<open>Lambda-abstractions with pattern matching:\<close>
syntax (ASCII)
"_lam_pats_syntax" :: "cases_syn \<Rightarrow> 'a \<Rightarrow> 'b" ("(%_)" 10)
syntax
"_lam_pats_syntax" :: "cases_syn \<Rightarrow> 'a \<Rightarrow> 'b" ("(\<lambda>_)" 10)
parse_translation \<open>
let
fun fun_tr ctxt [cs] =
let
val x = Syntax.free (fst (Name.variant "x" (Term.declare_term_frees cs Name.context)));
val ft = Case_Translation.case_tr true ctxt [x, cs];
in lambda x ft end
in [(@{syntax_const "_lam_pats_syntax"}, fun_tr)] end
\<close>
end