ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
changes
epsilon,arith: many changes
ordinal/succ_mem_succI/E: deleted; use succ_leI/E
nat/nat_0_in_succ: deleted; use nat_0_le
univ/Vset_rankI: deleted; use VsetI
IFOL = Pure + 
classes term < logic
default term
types o 0
arities o :: logic
consts	
    Trueprop	::	"o => prop"		("(_)" [0] 5)
    True,False	::	"o"
  (*Connectives*)
    "="		::	"['a,'a] => o"		(infixl 50)
    Not		::	"o => o"		("~ _" [40] 40)
    "&"		::	"[o,o] => o"		(infixr 35)
    "|"		::	"[o,o] => o"		(infixr 30)
    "-->"	::	"[o,o] => o"		(infixr 25)
    "<->"	::	"[o,o] => o"		(infixr 25)
  (*Quantifiers*)
    All		::	"('a => o) => o"	(binder "ALL " 10)
    Ex		::	"('a => o) => o"	(binder "EX " 10)
    Ex1		::	"('a => o) => o"	(binder "EX! " 10)
rules
  (*Equality*)
refl		"a=a"
subst		"[| a=b;  P(a) |] ==> P(b)"
  (*Propositional logic*)
conjI		"[| P;  Q |] ==> P&Q"
conjunct1	"P&Q ==> P"
conjunct2	"P&Q ==> Q"
disjI1		"P ==> P|Q"
disjI2		"Q ==> P|Q"
disjE		"[| P|Q;  P ==> R;  Q ==> R |] ==> R"
impI		"(P ==> Q) ==> P-->Q"
mp		"[| P-->Q;  P |] ==> Q"
FalseE		"False ==> P"
  (*Definitions*)
True_def	"True == False-->False"
not_def		"~P == P-->False"
iff_def		"P<->Q == (P-->Q) & (Q-->P)"
  (*Unique existence*)
ex1_def		"EX! x. P(x) == EX x. P(x) & (ALL y. P(y) --> y=x)"
  (*Quantifiers*)
allI		"(!!x. P(x)) ==> (ALL x.P(x))"
spec		"(ALL x.P(x)) ==> P(x)"
exI		"P(x) ==> (EX x.P(x))"
exE		"[| EX x.P(x);  !!x. P(x) ==> R |] ==> R"
  (* Reflection *)
eq_reflection  "(x=y)   ==> (x==y)"
iff_reflection "(P<->Q) ==> (P==Q)"
end