(* Title: HOL/Lubs.thy
Author: Jacques D. Fleuriot, University of Cambridge
*)
header {* Definitions of Upper Bounds and Least Upper Bounds *}
theory Lubs
imports Main
begin
text {* Thanks to suggestions by James Margetson *}
definition setle :: "'a set \<Rightarrow> 'a::ord \<Rightarrow> bool" (infixl "*<=" 70)
where "S *<= x = (ALL y: S. y \<le> x)"
definition setge :: "'a::ord \<Rightarrow> 'a set \<Rightarrow> bool" (infixl "<=*" 70)
where "x <=* S = (ALL y: S. x \<le> y)"
definition leastP :: "('a \<Rightarrow> bool) \<Rightarrow> 'a::ord \<Rightarrow> bool"
where "leastP P x = (P x \<and> x <=* Collect P)"
definition isUb :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a::ord \<Rightarrow> bool"
where "isUb R S x = (S *<= x \<and> x: R)"
definition isLub :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a::ord \<Rightarrow> bool"
where "isLub R S x = leastP (isUb R S) x"
definition ubs :: "'a set \<Rightarrow> 'a::ord set \<Rightarrow> 'a set"
where "ubs R S = Collect (isUb R S)"
subsection {* Rules for the Relations @{text "*<="} and @{text "<=*"} *}
lemma setleI: "ALL y: S. y \<le> x \<Longrightarrow> S *<= x"
by (simp add: setle_def)
lemma setleD: "S *<= x \<Longrightarrow> y: S \<Longrightarrow> y \<le> x"
by (simp add: setle_def)
lemma setgeI: "ALL y: S. x \<le> y \<Longrightarrow> x <=* S"
by (simp add: setge_def)
lemma setgeD: "x <=* S \<Longrightarrow> y: S \<Longrightarrow> x \<le> y"
by (simp add: setge_def)
subsection {* Rules about the Operators @{term leastP}, @{term ub} and @{term lub} *}
lemma leastPD1: "leastP P x \<Longrightarrow> P x"
by (simp add: leastP_def)
lemma leastPD2: "leastP P x \<Longrightarrow> x <=* Collect P"
by (simp add: leastP_def)
lemma leastPD3: "leastP P x \<Longrightarrow> y: Collect P \<Longrightarrow> x \<le> y"
by (blast dest!: leastPD2 setgeD)
lemma isLubD1: "isLub R S x \<Longrightarrow> S *<= x"
by (simp add: isLub_def isUb_def leastP_def)
lemma isLubD1a: "isLub R S x \<Longrightarrow> x: R"
by (simp add: isLub_def isUb_def leastP_def)
lemma isLub_isUb: "isLub R S x \<Longrightarrow> isUb R S x"
unfolding isUb_def by (blast dest: isLubD1 isLubD1a)
lemma isLubD2: "isLub R S x \<Longrightarrow> y : S \<Longrightarrow> y \<le> x"
by (blast dest!: isLubD1 setleD)
lemma isLubD3: "isLub R S x \<Longrightarrow> leastP (isUb R S) x"
by (simp add: isLub_def)
lemma isLubI1: "leastP(isUb R S) x \<Longrightarrow> isLub R S x"
by (simp add: isLub_def)
lemma isLubI2: "isUb R S x \<Longrightarrow> x <=* Collect (isUb R S) \<Longrightarrow> isLub R S x"
by (simp add: isLub_def leastP_def)
lemma isUbD: "isUb R S x \<Longrightarrow> y : S \<Longrightarrow> y \<le> x"
by (simp add: isUb_def setle_def)
lemma isUbD2: "isUb R S x \<Longrightarrow> S *<= x"
by (simp add: isUb_def)
lemma isUbD2a: "isUb R S x \<Longrightarrow> x: R"
by (simp add: isUb_def)
lemma isUbI: "S *<= x \<Longrightarrow> x: R \<Longrightarrow> isUb R S x"
by (simp add: isUb_def)
lemma isLub_le_isUb: "isLub R S x \<Longrightarrow> isUb R S y \<Longrightarrow> x \<le> y"
unfolding isLub_def by (blast intro!: leastPD3)
lemma isLub_ubs: "isLub R S x \<Longrightarrow> x <=* ubs R S"
unfolding ubs_def isLub_def by (rule leastPD2)
lemma isLub_unique: "[| isLub R S x; isLub R S y |] ==> x = (y::'a::linorder)"
apply (frule isLub_isUb)
apply (frule_tac x = y in isLub_isUb)
apply (blast intro!: order_antisym dest!: isLub_le_isUb)
done
end