tuned whitespace and indentation, emphasizing the logical structure of this long text;
(* Title: HOL/Tools/SMT/z3_model.ML
Author: Sascha Boehme and Philipp Meyer, TU Muenchen
Parser for counterexamples generated by Z3.
*)
signature Z3_MODEL =
sig
val parse_counterex: SMT_Translate.recon -> string list -> term list
end
structure Z3_Model: Z3_MODEL =
struct
(* counterexample expressions *)
datatype expr = True | False | Number of int * int option | Value of int |
Array of array
and array = Fresh of expr | Store of (array * expr) * expr
(* parsing *)
val space = Scan.many Symbol.is_ascii_blank
fun in_parens p = Scan.$$ "(" |-- p --| Scan.$$ ")"
fun in_braces p = (space -- Scan.$$ "{") |-- p --| (space -- Scan.$$ "}")
val digit = (fn
"0" => SOME 0 | "1" => SOME 1 | "2" => SOME 2 | "3" => SOME 3 |
"4" => SOME 4 | "5" => SOME 5 | "6" => SOME 6 | "7" => SOME 7 |
"8" => SOME 8 | "9" => SOME 9 | _ => NONE)
val nat_num = Scan.repeat1 (Scan.some digit) >>
(fn ds => fold (fn d => fn i => i * 10 + d) ds 0)
val int_num = Scan.optional ($$ "-" >> K (fn i => ~i)) I :|--
(fn sign => nat_num >> sign)
val is_char = Symbol.is_ascii_letter orf Symbol.is_ascii_digit orf
member (op =) (explode "_+*-/%~=<>$&|?!.@^#")
val name = Scan.many1 is_char >> implode
fun array_expr st = st |>
in_parens (space |-- (
Scan.this_string "const" |-- expr >> Fresh ||
Scan.this_string "store" -- space |-- array_expr -- expr -- expr >> Store))
and expr st = st |> (space |-- (
Scan.this_string "true" >> K True ||
Scan.this_string "false" >> K False ||
int_num -- Scan.option (Scan.$$ "/" |-- int_num) >> Number ||
Scan.this_string "val!" |-- nat_num >> Value ||
array_expr >> Array))
val mapping = space -- Scan.this_string "->"
val value = mapping |-- expr
val args_case = Scan.repeat expr -- value
val else_case = space -- Scan.this_string "else" |-- value >>
pair ([] : expr list)
val func =
let fun cases st = (else_case >> single || args_case ::: cases) st
in in_braces cases end
val cex = space |-- Scan.repeat (space |-- name --| mapping --
(func || expr >> (single o pair [])))
fun read_cex ls =
explode (cat_lines ls)
|> try (fst o Scan.finite Symbol.stopper cex)
|> the_default []
(* translation into terms *)
fun lookup_term tab (name, e) = Option.map (rpair e) (Symtab.lookup tab name)
fun with_name_context tab f xs =
let
val ns = Symtab.fold (Term.add_free_names o snd) tab []
val nctxt = Name.make_context ns
in fst (fold_map f xs (Inttab.empty, nctxt)) end
fun fresh_term T (tab, nctxt) =
let val (n, nctxt') = yield_singleton Name.variants "" nctxt
in (Free (n, T), (tab, nctxt')) end
fun term_of_value T i (cx as (tab, _)) =
(case Inttab.lookup tab i of
SOME t => (t, cx)
| NONE =>
let val (t, (tab', nctxt')) = fresh_term T cx
in (t, (Inttab.update (i, t) tab', nctxt')) end)
fun trans_expr _ True = pair @{term True}
| trans_expr _ False = pair @{term False}
| trans_expr T (Number (i, NONE)) = pair (HOLogic.mk_number T i)
| trans_expr T (Number (i, SOME j)) =
pair (Const (@{const_name divide}, [T, T] ---> T) $
HOLogic.mk_number T i $ HOLogic.mk_number T j)
| trans_expr T (Value i) = term_of_value T i
| trans_expr T (Array a) = trans_array T a
and trans_array T a =
let val dT = Term.domain_type T and rT = Term.range_type T
in
(case a of
Fresh e => trans_expr rT e #>> (fn t => Abs ("x", dT, t))
| Store ((a', e1), e2) =>
trans_array T a' ##>> trans_expr dT e1 ##>> trans_expr rT e2 #>>
(fn ((m, k), v) =>
Const (@{const_name fun_upd}, [T, dT, rT] ---> T) $ m $ k $ v))
end
fun trans_pat i T f x =
f (Term.domain_type T) ##>> trans (i-1) (Term.range_type T) x #>>
(fn (u, (us, t)) => (u :: us, t))
and trans i T ([], v) =
if i > 0 then trans_pat i T fresh_term ([], v)
else trans_expr T v #>> pair []
| trans i T (p :: ps, v) = trans_pat i T (fn U => trans_expr U p) (ps, v)
fun mk_eq' t us u = HOLogic.mk_eq (Term.list_comb (t, us), u)
fun mk_eq (Const (@{const_name fun_app}, _)) (u' :: us', u) = mk_eq' u' us' u
| mk_eq t (us, u) = mk_eq' t us u
fun translate (t, cs) =
let val T = Term.fastype_of t
in
(case (can HOLogic.dest_number t, cs) of
(true, [c]) => trans 0 T c #>> (fn (_, u) => [mk_eq u ([], t)])
| (_, (es, _) :: _) => fold_map (trans (length es) T) cs #>> map (mk_eq t)
| _ => raise TERM ("translate: no cases", [t]))
end
(* overall procedure *)
fun parse_counterex ({terms, ...} : SMT_Translate.recon) ls =
read_cex ls
|> map_filter (lookup_term terms)
|> with_name_context terms translate
|> flat
end